34 resultados para DETECTION LIMIT
Resumo:
Two alpacas from a herd in southwest Switzerland died for unknown reasons. Necropsy revealed chronic weight loss and pale mucous membranes. Infection with hemotropic mycoplasmas was suspected and subsequently confirmed by molecular methods. In order to investigate the epidemiological situation in this herd, a real-time TaqMan((R)) qPCR assay for the specific detection and quantification of hemoplasma infection in South American camelids was developed. This assay was based on the 16S rRNA gene and amplified 'Candidatus Mycoplasma haemolamae' DNA, but not DNA from other hemoplasmas or non-hemotropic mycoplasma species. The lower detection limit was one copy/PCR, and the amplification efficiency was 97.4%. In 11 out of 24 clinically healthy herd mates of the two infected alpacas, 'Candidatus M. haemolamae' infection was confirmed. No correlation was found between bacterial load and clinical signs or anemia. The assay described herein enables to detect and quantify 'Candidatus M. haemolamae' and may be used in future studies to investigate the prevalence, pathogenesis and treatment follow-up of hemoplasma infections in South American camelids.
Resumo:
A nonfluorescent low-cost, low-density oligonucleotide array was designed for detecting the whole coronavirus genus after reverse transcription (RT)-PCR. The limit of detection was 15.7 copies/reaction. The clinical detection limit in patients with severe acute respiratory syndrome was 100 copies/sample. In 39 children suffering from coronavirus 229E, NL63, OC43, or HKU1, the sensitivity was equal to that of individual real-time RT-PCRs.
Resumo:
Reactive nitrogen oxide species (RNOS) have been implicated as effector molecules in inflammatory diseases. There is emerging evidence that gamma-tocopherol (gammaT), the major form of vitamin E in the North American diet, may play an important role in these diseases. GammaT scavenges RNOS such as peroxynitrite by forming a stable adduct, 5-nitro-gammaT (NGT). Here we describe a convenient HPLC method for the simultaneous determination of NGT, alphaT, and gammaT in blood plasma and other tissues. Coulometric detection of NGT separated on a deactivated reversed-phase column was linear over a wide range of concentrations and highly sensitive (approximately 10 fmol detection limit). NGT extracted from blood plasma of 15-week-old Fischer 344 rats was in the low nM range, representing approximately 4% of gammaT. Twenty-four h after intraperitoneal injection of zymosan, plasma NGT levels were 2-fold higher compared to fasted control animals when adjusted to gammaT or corrected for total neutral lipids, while alpha- and gammaT levels remained unchanged. These results demonstrate that nitration of gammaT is increased under inflammatory conditions and highlight the importance of RNOS reactions in the lipid phase. The present HPLC method should be helpful in clarifying the precise physiological role of gammaT.
Resumo:
The identification of 15N-labeled 3-nitrotyrosine (NTyr) by gas chromatography/mass spectroscopy in protein hydrolyzates from activated RAW 264.7 macrophages incubated with 15N-L-arginine confirms that nitric oxide synthase (NOS) is involved in the nitration of protein-bound tyrosine (Tyr). An assay is presented for NTyr that employs HPLC with tandem electrochemical and UV detection. The assay involves enzymatic hydrolysis of protein, acetylation, solvent extraction, O-deacetylation, and dithionite reduction to produce an analyte containing N-acetyl-3-aminotyrosine, an electrochemically active derivative of NTyr. We estimate the level of protein-bound NTyr in normal rat plasma to be approximately 0-1 residues per 10(6) Tyr with a detection limit of 0.5 per 10(7) Tyr when > 100 nmol of Tyr is analyzed and when precautions are taken to limit nitration artifacts. Zymosan-treated RAW 264.7 cells were shown to have an approximately 6-fold higher level of protein-bound NTyr compared with control cells and cells treated with N(G)-monomethyl-L-arginine, an inhibitor of NOS. Intraperitoneal injection of F344 rats with zymosan led to a marked elevation in protein-bound NTyr to approximately 13 residues per 10(6) Tyr, an approximately 40-fold elevation compared with plasma protein of untreated rats; cotreatment with N(G)-monomethyl-L-arginine inhibited the formation of NTyr in plasma protein from blood and peritoneal exudate by 69% and 53%, respectively. This assay offers a highly sensitive and quantitative approach for investigating the role of reactive byproducts of nitric oxide in the many pathological conditions and disease states associated with NO(X) exposure such as inflammation and smoking.
Resumo:
BACKGROUND: Culture-independent methods based on the 16S ribosomal RNA molecule are nowadays widely used for assessment of the composition of the intestinal microbiota, in relation to host health or probiotic efficacy. Because Bifidobacterium thermophilum was only recently isolated from human faeces until now, no specific real-time PCR (qPCR) assay has been developed for detection of this species as component of the bifidobacterial community of the human intestinal flora. RESULTS: Design of specific primers and probe was achieved based on comparison of 108 published bifidobacterial 16S rDNA sequences with the recently published sequence of the human faecal isolate B. thermophilum RBL67. Specificity of the primer was tested in silico by similarity search against the sequence database and confirmed experimentally by PCR amplification on 17 Bifidobacterium strains, representing 12 different species, and two Lactobacillus strains. The qPCR assay developed was linear for B. thermophilum RBL67 DNA quantities ranging from 0.02 ng/microl to 200 ng/microl and showed a detection limit of 10(5) cells per gram faeces. The application of this new qPCR assay allowed to detect the presence of B. thermophilum in one sample from a 6-month old breast-fed baby among 17 human faecal samples tested. Additionally, the specific qPCR primers in combination with selective plating experiments led to the isolation of F9K9, a faecal isolate from a 4-month old breast-fed baby. The 16S rDNA sequence of this isolate is 99.93% similar to that of B. thermophilum RBL67 and confirmed the applicability of the new qPCR assay in faecal samples. CONCLUSION: A new B. thermophilum-specific qPCR assay was developed based on species-specific target nucleotides in the 16S rDNA. It can be used to further characterize the composition of the bifidobacterial community in the human gastrointestinal tract. Until recently, B. thermophilum was considered as a species of animal origin, but here we confirm with the application of this new PCR assay the presence of B. thermophilum strains in the human gut.
Resumo:
BACKGROUND Flavobacterium psychrophilum is the agent of Bacterial Cold Water Disease and Rainbow Trout Fry Syndrome, two diseases leading to high mortality. Pathogen detection is mainly carried out using cultures and more rapid and sensitive methods are needed. RESULTS We describe a qPCR technique based on the single copy gene β' DNA-dependent RNA polymerase (rpoC). Its detection limit was 20 gene copies and the quantification limit 103 gene copies per reaction. Tests on spiked spleens with known concentrations of F. psychrophilum (106 to 101 cells per reaction) showed no cross-reactions between the spleen tissue and the primers and probe. Screening of water samples and spleens from symptomless and infected fishes indicated that the pathogen was already present before the outbreaks, but F. psychrophilum was only quantifiable in spleens from diseased fishes. CONCLUSIONS This qPCR can be used as a highly sensitive and specific method to detect F. psychrophilum in different sample types without the need for culturing. qPCR allows a reliable detection and quantification of F. psychrophilum in samples with low pathogen densities. Quantitative data on F. psychrophilum abundance could be useful to investigate risk factors linked to infections and also as early warning system prior to potential devastating outbreak.
Resumo:
BACKGROUND Detection of HIV-1 p24 antigen permits early identification of primary HIV infection and timely intervention to limit further spread of the infection. Principally, HIV screening should equally detect all viral variants, but reagents for a standardised test evaluation are limited. Therefore, we aimed to create an inexhaustible panel of diverse HIV-1 p24 antigens. METHODS We generated a panel of 43 recombinantly expressed virus-like particles (VLPs), containing the structural Gag proteins of HIV-1 subtypes A-H and circulating recombinant forms (CRF) CRF01_AE, CRF02_AG, CRF12_BF, CRF20_BG and group O. Eleven 4th generation antigen/antibody tests and five antigen-only tests were evaluated for their ability to detect VLPs diluted in human plasma to p24 concentrations equivalent to 50, 10 and 2 IU/ml of the WHO p24 standard. Three tests were also evaluated for their ability to detect p24 after heat-denaturation for immune-complex disruption, a pre-requisite for ultrasensitive p24 detection. RESULTS Our VLP panel exhibited an average intra-clade p24 diversity of 6.7%. Among the 4th generation tests, the Abbott Architect and Siemens Enzygnost Integral 4 had the highest sensitivity of 97.7% and 93%, respectively. Alere Determine Combo and BioRad Access were least sensitive with 10.1% and 40.3%, respectively. Antigen-only tests were slightly more sensitive than combination tests. Almost all tests detected the WHO HIV-1 p24 standard at a concentration of 2 IU/ml, but their ability to detect this input for different subtypes varied greatly. Heat-treatment lowered overall detectability of HIV-1 p24 in two of the three tests, but only few VLPs had a more than 3-fold loss in p24 detection. CONCLUSIONS The HIV-1 Gag subtype panel has a broad diversity and proved useful for a standardised evaluation of the detection limit and breadth of subtype detection of p24 antigen-detecting tests. Several tests exhibited problems, particularly with non-B subtypes.
Comparative stability studies of poly(2-methyl-2-oxazoline) and poly(ethylene glycol) brush coatings
Resumo:
Non-fouling surfaces that resist non-specific adsorption of proteins, bacteria, and higher organisms are of particular interest in diverse applications ranging from marine coatings to diagnostic devices and biomedical implants. Poly(ethylene glycol) (PEG) is the most frequently used polymer to impart surfaces with such non-fouling properties. Nevertheless, limitations in PEG stability have stimulated research on alternative polymers that are potentially more stable than PEG. Among them, we previously investigated poly(2-methyl-2-oxazoline) (PMOXA), a peptidomimetic polymer, and found that PMOXA shows excellent anti-fouling properties. Here, we compare the stability of films self-assembled from graft copolymers exposing a dense brush layer of PEG and PMOXA side chains, respectively, in physiological and oxidative media. Before media exposure both film types prevented the adsorption of full serum proteins to below the detection limit of optical waveguide in situ measurements. Before and after media exposure for up to 2 weeks, the total film thickness, chemical composition, and total adsorbed mass of the films were quantified using variable angle spectroscopic ellipsometry (VASE), X-ray photoelectron spectroscopy (XPS), and optical waveguide lightmode spectroscopy (OWLS), respectively. We found (i) that PMOXA graft copolymer films were significantly more stable than PEG graft copolymer films and kept their protein-repellent properties under all investigated conditions and (ii) that film degradation was due to side chain degradation rather than due to copolymer desorption.
Resumo:
A continuous and highly sensitive absorption method for detection of soluble phosphate in ice cores has been developed using a molybdate reagent and a 2m liquid waveg- uide (LWCC). The method is optimized to meet the low concentrations of phosphate in Greenland ice, it has a detection limit of around 0.1ppb and a depth resolution of approximately 2cm. The new method has been applied to obtain phosphate concen- trations from segments of two Northern Greenland ice cores: from a shallow firn core covering the most recent 120yr and from the recently obtained deep NEEM ice core in which sections from the late glacial period have been analysed. Phosphate con- centrations in 20th century ice are around 0.32ppb with no indication of anthropogenic influence in the most recent ice. In the glacial part of the NEEM ice core concentra- tions in the cold stadial periods are significantly higher, in the range of 6–24ppb, while interstadial ice concentrations are around 2ppb. In the shallow firn core, a strong cor- relation between concentrations of phosphate and insoluble dust suggests a similar deposition pattern for phosphate and dust. In the glacial ice, phosphate and dust also correlate quite strongly, however it is most likely that this correlation originates from the phosphate binding to dust during transport, with only a fraction coming directly from dust. Additionally a constant ratio between phosphate and potassium concentrations shows evidence of a possible biogenic land source.
Resumo:
Currently, observations of space debris are primarily performed with ground-based sensors. These sensors have a detection limit at some centimetres diameter for objects in Low Earth Orbit (LEO) and at about two decimetres diameter for objects in Geostationary Orbit (GEO). The few space-based debris observations stem mainly from in-situ measurements and from the analysis of returned spacecraft surfaces. Both provide information about mostly sub-millimetre-sized debris particles. As a consequence the population of centimetre- and millimetre-sized debris objects remains poorly understood. The development, validation and improvement of debris reference models drive the need for measurements covering the whole diameter range. In 2003 the European Space Agency (ESA) initiated a study entitled “Space-Based Optical Observation of Space Debris”. The first tasks of the study were to define user requirements and to develop an observation strategy for a space-based instrument capable of observing uncatalogued millimetre-sized debris objects. Only passive optical observations were considered, focussing on mission concepts for the LEO, and GEO regions respectively. Starting from the requirements and the observation strategy, an instrument system architecture and an associated operations concept have been elaborated. The instrument system architecture covers the telescope, camera and onboard processing electronics. The proposed telescope is a folded Schmidt design, characterised by a 20 cm aperture and a large field of view of 6°. The camera design is based on the use of either a frame-transfer charge coupled device (CCD), or on a cooled hybrid sensor with fast read-out. A four megapixel sensor is foreseen. For the onboard processing, a scalable architecture has been selected. Performance simulations have been executed for the system as designed, focussing on the orbit determination of observed debris particles, and on the analysis of the object detection algorithms. In this paper we present some of the main results of the study. A short overview of the user requirements and observation strategy is given. The architectural design of the instrument is discussed, and the main tradeoffs are outlined. An insight into the results of the performance simulations is provided.
Resumo:
ATP-binding cassette transporter A1 (ABCA1) mediates the transport of cholesterol and phospholipids from cells to lipid-poor HDL and maintains cellular lipid homeostasis. Impaired ABCA1 function plays a role in lipid disorders, cardiovascular disease, atherosclerosis, and metabolic disorders. Despite the clinical importance of ABCA1, no method is available for quantifying ABCA1 protein. We developed a sensitive indirect competitive ELISA for measuring ABCA1 protein in human tissues using a commercial ABCA1 peptide and a polyclonal anti-ABCA1 antibody. The ELISA has a detection limit of 8 ng/well (0.08 mg/l) with a working range of 9-1000 ng/well (0.09-10 mg/l). Intra- and interassay coefficient of variations (CVs) were 6.4% and 9.6%, respectively. Good linearity (r = 0.97-0.99) was recorded in serial dilutions of human arterial and placental crude membrane preparations, and fibroblast lysates. The ELISA measurements for ABCA1 quantification in reference arterial tissues corresponded well with immunoblot analysis. The assay performance and clinical utility was evaluated with arterial tissues obtained from 15 controls and 44 patients with atherosclerotic plaques. ABCA1 protein concentrations in tissue lysates were significantly lower in patients (n = 24) as compared with controls (n = 5; 9.37 +/- 0.82 vs. 17.03 +/- 4.25 microg/g tissue; P < 0.01). The novel ELISA enables the quantification of ABCA1 protein in human tissues and confirms previous semiquantitative immunoblot results.
Resumo:
Exposimeters are increasingly applied in bioelectromagnetic research to determine personal radiofrequency electromagnetic field (RF-EMF) exposure. The main advantages of exposimeter measurements are their convenient handling for study participants and the large amount of personal exposure data, which can be obtained for several RF-EMF sources. However, the large proportion of measurements below the detection limit is a challenge for data analysis. With the robust ROS (regression on order statistics) method, summary statistics can be calculated by fitting an assumed distribution to the observed data. We used a preliminary sample of 109 weekly exposimeter measurements from the QUALIFEX study to compare summary statistics computed by robust ROS with a naïve approach, where values below the detection limit were replaced by the value of the detection limit. For the total RF-EMF exposure, differences between the naïve approach and the robust ROS were moderate for the 90th percentile and the arithmetic mean. However, exposure contributions from minor RF-EMF sources were considerably overestimated with the naïve approach. This results in an underestimation of the exposure range in the population, which may bias the evaluation of potential exposure-response associations. We conclude from our analyses that summary statistics of exposimeter data calculated by robust ROS are more reliable and more informative than estimates based on a naïve approach. Nevertheless, estimates of source-specific medians or even lower percentiles depend on the assumed data distribution and should be considered with caution.
Resumo:
Erosion of dentine causes mineral dissolution, while the organic compounds remain at the surface. Therefore, a determination of tissue loss is complicated. Established quantitative methods for the evaluation of enamel have also been used for dentine, but the suitability of these techniques in this field has not been systematically determined. Therefore, this study aimed to compare longitudinal microradiography (LMR), contacting (cPM) and non-contacting profilometry (ncPM), and analysis of dissolved calcium (Ca analysis) in the erosion solution. Results are discussed in the light of the histology of dentine erosion. Erosion was performed with 0.05 M citric acid (pH 2.5) for 30, 60, 90 or 120 min, and erosive loss was determined by each method. LMR, cPM and ncPM were performed before and after collagenase digestion of the demineralised organic surface layer, with an emphasis on moisture control. Scanning electron microscopy was performed on randomly selected specimens. All measurements were converted into micrometres. Profilometry was not suitable to adequately quantify mineral loss prior to collagenase digestion. After 120 min of erosion, values of 5.4 +/- 1.9 microm (ncPM) and 27.8 +/- 4.6 microm (cPM) were determined. Ca analysis revealed a mineral loss of 55.4 +/- 11.5 microm. The values for profilometry after matrix digestion were 43.0 +/- 5.5 microm (ncPM) and 46.9 +/- 6.2 (cPM). Relative and proportional biases were detected for all method comparisons. The mineral loss values were below the detection limit for LMR. The study revealed gross differences between methods, particularly when demineralised organic surface tissue was present. These results indicate that the choice of method is critical and depends on the parameter under study.
Resumo:
We improved, evaluated, and used Sanger sequencing for quantification of single nucleotide polymorphism (SNP) variants in transcripts and gDNA samples. This improved assay resulted in highly reproducible relative allele frequencies (e.g., for a heterozygous gDNA 50.0+/-1.4%, and for a missense mutation-bearing transcript 46.9+/-3.7%) with a lower detection limit of 3-9%. It provided excellent accuracy and linear correlation between expected and observed relative allele frequencies. This sequencing assay, which can also be used for the quantification of copy number variations (CNVs), methylations, mosaicisms, and DNA pools, enabled us to analyze transcripts of the FBN1 gene in fibroblasts and blood samples of patients with suspected Marfan syndrome not only qualitatively but also quantitatively. We report a total of 18 novel and 19 known FBN1 sequence variants leading to a premature termination codon (PTC), 26 of which we analyzed by quantitative sequencing both at gDNA and cDNA levels. The relative amounts of PTC-containing FBN1 transcripts in fresh and PAXgene-stabilized blood samples were significantly higher (33.0+/-3.9% to 80.0+/-7.2%) than those detected in affected fibroblasts with inhibition of nonsense-mediated mRNA decay (NMD) (11.0+/-2.1% to 25.0+/-1.8%), whereas in fibroblasts without NMD inhibition no mutant alleles could be detected. These results provide evidence for incomplete NMD in leukocytes and have particular importance for RNA-based analyses not only in FBN1 but also in other genes.