40 resultados para Core temperature
Resumo:
Pathologically elevated body core temperature, measured at the death scene, is an important finding in medico-legal investigation of violent deaths. An abnormally high rectal temperature at any death scene may point to an underlying pathology, the influence of certain drugs or a hidden cerebral traumatism, and death by suffocation which would remain undetected without further medico-legal investigations. Furthermore, hyperthermia and fever, if unrecognized, may result in an erroneous forensic estimation of time since death in the early postmortem period by the "Henssge method." By a retrospective study of 744 cases, the authors demonstrate that hyperthermia is a finding with an incidence of 10% of all cases of violent death. The main causes are: influence of drugs, malignant tumors, cerebral hypoxia as a result of suffocation, infections, and systemic inflammatory disorders. As a consequence it must be stated, that hyperthermia must be excluded in every medico-legal death scene investigation by a correct measurement of body core temperature and a comparison between the cooling rate of the body and the behavior of early postmortem changes, notably livor and rigor mortis.
Resumo:
BACKGROUND: Mild perioperative hypothermia increases the risk of several severe complications. Perioperative patient warming to preserve normothermia has thus become routine, with forced-air warming being used most often. In previous studies, various resistive warming systems have shown mixed results in comparison with forced-air. Recently, a polymer-based resistive patient warming system has been developed. We compared the efficacy of a standard forced-air warming system with the resistive polymer system in volunteers. METHODS: Eight healthy volunteers participated, each on two separate study days. Unanesthetized volunteers were cooled to a core temperature (tympanic membrane) of 34 degrees C by application of forced-air at 10 degrees C and a circulating-water mattress at 4 degrees C. Meperidine and buspirone were administered to prevent shivering. In a randomly designated order, volunteers were then rewarmed (until their core temperatures reached 36 degrees C) with one of the following active warming systems: (1) forced-air warming (Bair Hugger warming cover #300, blower #750, Arizant, Eden Prairie, MN); or (2) polymer fiber resistive warming (HotDog whole body blanket, HotDog standard controller, Augustine Biomedical, Eden Prairie, MN). The alternate system was used on the second study day. Metabolic heat production, cutaneous heat loss, and core temperature were measured. RESULTS: Metabolic heat production and cutaneous heat loss were similar with each system. After a 30-min delay, core temperature increased nearly linearly by 0.98 (95% confidence interval 0.91-1.04) degrees C/h with forced-air and by 0.92 (0.85-1.00) degrees C/h with resistive heating (P = 0.4). CONCLUSIONS: Heating efficacy and core rewarming rates were similar with full-body forced-air and full-body resistive polymer heating in healthy volunteers.
Resumo:
OBJECTIVES To investigate and correct the temperature dependence of postmortem MR quantification used for soft tissue characterization and differentiation in thoraco-abdominal organs. MATERIAL AND METHODS Thirty-five postmortem short axis cardiac 3-T MR examinations were quantified using a quantification sequence. Liver, spleen, left ventricular myocardium, pectoralis muscle and subcutaneous fat were analysed in cardiac short axis images to obtain mean T1, T2 and PD tissue values. The core body temperature was measured using a rectally inserted thermometer. The tissue-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. RESULTS In a 3D plot comprising the combined data of T1, T2 and PD, different organs/tissues could be well differentiated from each other. The quantitative values were influenced by the temperature. T1 in particular exhibited strong temperature dependence. The correction of quantitative values to a temperature of 37 °C resulted in better tissue discrimination. CONCLUSION Postmortem MR quantification is feasible for soft tissue discrimination and characterization of thoraco-abdominal organs. This provides a base for computer-aided diagnosis and detection of tissue lesions. The temperature dependence of the T1 values challenges postmortem MR quantification. Equations to correct for the temperature dependence are provided. KEY POINTS • Postmortem MR quantification is feasible for soft tissue discrimination and characterization • Temperature dependence of the T1 values challenges the MR quantification approach • The results provide the basis for computer-aided postmortem MRI diagnosis • Diagnostic criteria may also be applied for living patients.
Resumo:
BACKGROUND: Several adverse consequences are caused by mild perioperative hypothermia. Maintaining normothermia with patient warming systems, today mostly with forced air (FA), has thus become a standard procedure during anesthesia. Recently, a polymer-based resistive patient warming system was developed. We compared the efficacy of a widely distributed FA system with the resistive-polymer (RP) system in a prospective, randomized clinical study. METHODS: Eighty patients scheduled for orthopedic surgery were randomized to either FA warming (Bair Hugger warming blanket #522 and blower #750, Arizant, Eden Prairie, MN) or RP warming (Hot Dog Multi-Position Blanket and Hot Dog controller, Augustine Biomedical, Eden Prairie, MN). Core temperature, skin temperature (head, upper and lower arm, chest, abdomen, back, thigh, and calf), and room temperature (general and near the patient) were recorded continuously. RESULTS: After an initial decrease, core temperatures increased in both groups at comparable rates (FA: 0.33 degrees C/h +/- 0.34 degrees C/h; RP: 0.29 degrees C/h +/- 0.35 degrees C/h; P = 0.6). There was also no difference in the course of mean skin and mean body (core) temperature. FA warming increased the environment close to the patient (the workplace of anesthesiologists and surgeons) more than RP warming (24.4 degrees C +/- 5.2 degrees C for FA vs 22.6 degrees C +/- 1.9 degrees C for RP at 30 minutes; P(AUC) <0.01). CONCLUSION: RP warming performed as efficiently as FA warming in patients undergoing orthopedic surgery.
Resumo:
Since its discovery in Greenland ice cores, the millennial scale climatic variability of the last glacial period has been increasingly documented at all latitudes with studies focusing mainly on Marine Isotopic Stage 3 (MIS 3; 28–60 thousand of years before present, hereafter ka) and characterized by short Dansgaard-Oeschger (DO) events. Recent and new results obtained on the EPICA and NorthGRIP ice cores now precisely describe the rapid variations of Antarctic and Greenland temperature during MIS 5 (73.5–123 ka), a time period corresponding to relatively high sea level. The results display a succession of abrupt events associated with long Greenland InterStadial phases (GIS) enabling us to highlight a sub-millennial scale climatic variability depicted by (i) short-lived and abrupt warming events preceding some GIS (precursor-type events) and (ii) abrupt warming events at the end of some GIS (rebound-type events). The occurrence of these sub-millennial scale events is suggested to be driven by the insolation at high northern latitudes together with the internal forcing of ice sheets. Thanks to a recent NorthGRIP-EPICA Dronning Maud Land (EDML) common timescale over MIS 5, the bipolar sequence of climatic events can be established at millennial to sub-millennial timescale. This shows that for extraordinary long stadial durations the accompanying Antarctic warming amplitude cannot be described by a simple linear relationship between the two as expected from the bipolar seesaw concept. We also show that when ice sheets are extensive, Antarctica does not necessarily warm during the whole GS as the thermal bipolar seesaw model would predict, questioning the Greenland ice core temperature records as a proxy for AMOC changes throughout the glacial period.
Resumo:
BACKGROUND: Ondansetron, a serotonin-3 receptor antagonist, reduces postoperative shivering. Drugs that reduce shivering usually impair central thermoregulatory control, and may thus be useful for preventing shivering during induction of therapeutic hypothermia. We determined, therefore, whether ondansetron reduces the major autonomic thermoregulatory response thresholds (triggering core temperatures) in humans. METHODS: Control (placebo) and ondansetron infusions at the target plasma concentration of 250 ng ml(-1) were studied in healthy volunteers on two different days. Each day, skin and core temperatures were increased to provoke sweating; then reduced to elicit peripheral vasoconstriction and shivering. We determined the core-temperature sweating, vasoconstriction and shivering thresholds after compensating for changes in mean-skin temperature. Data were analysed using t-tests and presented as means (sds); P<0.05 was taken as significant. RESULTS: Ondensetron plasma concentrations were 278 (57), 234 (55) and 243 (58) ng ml(-1) at the sweating, vasoconstriction and shivering thresholds, respectively; these corresponded to approximately 50 mg of ondansetron which is approximately 10 times the dose used for postoperative nausea and vomiting. Ondansetron did not change the sweating (control 37.4 (0.4) degrees C, ondansetron 37.6 (0.3) degrees C, P=0.16), vasoconstriction (37.0 (0.5) degrees C vs 37.1 (0.3) degrees C; P=0.70), or shivering threshold (36.3 (0.5) degrees C vs 36.3 (0.6) degrees C; P=0.76). No sedation was observed on either study day. CONCLUSIONS: /b>. Ondansetron appears to have little potential for facilitating induction of therapeutic hypothermia.
Resumo:
INTRODUCTION: Mild therapeutic hypothermia has been shown to improve outcome for patients after cardiac arrest and may be beneficial for ischaemic stroke and myocardial ischaemia patients. However, in the awake patient, even a small decrease of core temperature provokes vigorous autonomic reactions-vasoconstriction and shivering-which both inhibit efficient core cooling. Meperidine and skin warming each linearly lower vasoconstriction and shivering thresholds. We tested whether a combination of skin warming and a medium dose of meperidine additively would reduce the shivering threshold to below 34 degrees C without producing significant sedation or respiratory depression. METHODS: Eight healthy volunteers participated on four study days: (1) control, (2) skin warming (with forced air and warming mattress), (3) meperidine (target plasma level: 0.9 mug/ml), and (4) skin warming plus meperidine (target plasma level: 0.9 mug/ml). Volunteers were cooled with 4 degrees C cold Ringer lactate infused over a central venous catheter (rate asymptotically equal to 2.4 degrees C/hour core temperature drop). Shivering threshold was identified by an increase of oxygen consumption (+20% of baseline). Sedation was assessed with the Observer's Assessment of Alertness/Sedation scale. RESULTS: Control shivering threshold was 35.5 degrees C +/- 0.2 degrees C. Skin warming reduced the shivering threshold to 34.9 degrees C +/- 0.5 degrees C (p = 0.01). Meperidine reduced the shivering threshold to 34.2 degrees C +/- 0.3 degrees C (p < 0.01). The combination of meperidine and skin warming reduced the shivering threshold to 33.8 degrees C +/- 0.2 degrees C (p < 0.01). There were no synergistic or antagonistic effects of meperidine and skin warming (p = 0.59). Only very mild sedation occurred on meperidine days. CONCLUSION: A combination of meperidine and skin surface warming reduced the shivering threshold to 33.8 degrees C +/- 0.2 degrees C via an additive interaction and produced only very mild sedation and no respiratory toxicity.
Resumo:
The purpose of the present study was to investigate whether serous fluids, blood, cerebrospinal fluid (CSF), and putrefied CSF can be characterized and differentiated in synthetically calculated magnetic resonance (MR) images based on their quantitative T 1, T 2, and proton density (PD) values. Images from 55 postmortem short axis cardiac and 31 axial brain 1.5-T MR examinations were quantified using a quantification sequence. Serous fluids, fluid blood, sedimented blood, blood clots, CSF, and putrefied CSF were analyzed for their mean T 1, T 2, and PD values. Body core temperature was measured during the MRI scans. The fluid-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. In a 3D plot as well as in statistical analysis, the quantitative T 1, T 2 and PD values of serous fluids, fluid blood, sedimented blood, blood clots, CSF, and putrefied CSF could be well differentiated from each other. The quantitative T 1 and T 2 values were temperature-dependent. Correction of quantitative values to a temperature of 37 °C resulted in significantly better discrimination between all investigated fluid mediums. We conclude that postmortem 1.5-T MR quantification is feasible to discriminate between blood, serous fluids, CSF, and putrefied CSF. This finding provides a basis for the computer-aided diagnosis and detection of fluids and hemorrhages.
Resumo:
Current guidelines for the treatment of hypothermic cardiocirculatory arrest recommend extracorporeal life support and rewarming, using cardiopulmonary bypass or extracorporeal membrane oxygenation circuits. Both have design-related shortcomings which may result in prolonged reperfusion time or insufficient oxygen delivery to vital organs. This article describes clear advantages of minimally invasive extracorporeal circulation systems during emergency extracorporeal life support in hypothermic arrest. The technique of minimally invasive extracorporeal circulation for reperfusion and rewarming is represented by the case of a 59-year-old patient in hypothermic cardiocirculatory arrest at 25.3°C core temperature, with multiple trauma. With femoro-femoral cannulation performed under sonographic and echocardiographic guidance, extracorporeal life support was initiated using a minimally invasive extracorporeal circulation system. Perfusing rhythm was restored at 28°C. During rewarming on the mobile circuit, trauma surveys were completed and the treatment initiated. Normothermic weaning was successful on the first attempt, trauma surgery was completed and the patient survived neurologically intact. For extracorporeal resuscitation from hypothermic arrest, minimally invasive extracorporeal circulation offers all the advantages of conventional cardiopulmonary bypass and extracorporeal membrane oxygenation systems without their shortcomings.
Resumo:
Regrouping female rabbits in group-housing systems is common management practice in rabbit breeding, which may, however, induce agonistic interactions resulting in social stress and severe injuries. Here we compared two methods of regrouping female rabbits with respect to their effects on behaviour, stress and injuries. Thus, we introduced two unfamiliar rabbits into a group of rabbits either in the group's familiar pen (HOME) or in a novel disinfected pen (NOVEL), and assessed the effects of these treatments on general activity, number and duration of agonistic interactions, number and severity of injuries and body temperature as a measure of stress. General activities were not affected by the method of regrouping. Also, treatment had no effect on the number and duration of agonistic interactions. However, the numbers of injuries (P=0.030) as well as body temperature on the first clay after regrouping (p=0.0036) were increased in rabbits regrouped in a novel clean pen. These findings question the recommendation to introduce unfamiliar does into established groups in a neutral environment and indicate that regrouping in the group's home pen may decrease the risk of severe injuries and social stress. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Accumulation and delta O-18 data from Alpine ice cores provide information on past temperature and precipitation. However, their correlation with seasonal or annual mean temperature and precipitation at nearby sites is often low. This is partly due to the irregular sampling of the atmosphere by the ice core (i.e. ice cores almost only record precipitation events and not dry periods) and the possible incongruity between annual layers and calendar years. Using daily meteorological data from a nearby station and reanalyses, we replicate the ice core from the Grenzgletscher (Switzerland, 4200m a.s.l.) on a sample-by-sample basis by calculating precipitation-weighted temperature (PWT) over short intervals. Over the last 15 yr of the ice core record, accumulation and delta O-18 variations can be well reproduced on a sub-seasonal scale. This allows a wiggle-matching approach for defining quasi-annual layers, resulting in high correlations between measured quasi-annual delta O-18 and PWT. Further back in time, the agreement deteriorates. Nevertheless, we find significant correlations over the entire length of the record (1938-1993) of ice core delta O-18 with PWT, but not with annual mean temperature. This is due to the low correlations between PWT and annual mean temperature, a characteristic which in ERA-Interim reanalysis is also found for many other continental mid-to-high-latitude regions. The fact that meteorologically very different years can lead to similar combinations of PWT and accumulation poses limitations to the use of delta O-18 from Alpine ice cores for temperature reconstructions. Rather than for reconstructing annual mean temperature, delta O-18 from Alpine ice cores should be used to reconstruct PWT over quasi-annual periods. This variable is reproducible in reanalysis or climate model data and could thus be assimilated into conventional climate models.
Resumo:
During the last glacial cycle, Greenland temperature showed many rapid temperature variations, the so-called Dansgaard–Oeschger (DO) events. The past atmospheric methane concentration closely followed these temperature variations, which implies that the warmings recorded in Greenland were probably hemispheric in extent. Here we substantially extend and complete the North Greenland Ice Core Project (NGRIP) methane record from the Preboreal Holocene (PB) back to the end of the last interglacial period with a mean time resolution of 54 yr. We relate the amplitudes of the methane increases associated with DO events to the amplitudes of the local Greenland NGRIP temperature increases derived from stable nitrogen isotope (δ15N) measurements, which have been performed along the same ice core (Kindler et al., 2014). We find the ratio to oscillate between 5 parts per billion (ppb) per °C and 18 ppb °C−1 with the approximate frequency of the precessional cycle. A remarkably high ratio of 25.5 ppb °C−1 is reached during the transition from the Younger Dryas (YD) to the PB. Analysis of the timing of the fast methane and temperature increases reveals significant lags of the methane increases relative to NGRIP temperature for DO events 5, 9, 10, 11, 13, 15, 19, and 20. These events generally have small methane increase rates and we hypothesize that the lag is caused by pronounced northward displacement of the source regions from stadial to interstadial. We further show that the relative interpolar concentration difference (rIPD) of methane is about 4.5% for the stadials between DO events 18 and 20, which is in the same order as in the stadials before and after DO event 2 around the Last Glacial Maximum. The rIPD of methane remains relatively stable throughout the full last glacial, with a tendency for elevated values during interstadial compared to stadial periods.
Resumo:
In order to reconstruct the temperature of the North Greenland Ice Core Project (NGRIP) site, new measurements of δ15N have been performed covering the time period from the beginning of the Holocene to Dansgaard–Oeschger (DO) event 8. Together with previously measured and mostly published δ15N data, we present for the first time a NGRIP temperature reconstruction for the whole last glacial period from 10 to 120 kyr b2k (thousand years before 2000 AD) including every DO event based on δ15N isotope measurements combined with a firn densification and heat diffusion model. The detected temperature rises at the onset of DO events range from 5 °C (DO 25) up to 16.5 °C (DO 11) with an uncertainty of ±3 °C. To bring measured and modelled data into agreement, we had to reduce the accumulation rate given by the NGRIP ss09sea06bm timescale in some periods by 30 to 35%, especially during the last glacial maximum. A comparison between reconstructed temperature and δ18Oice data confirms that the isotopic composition of the stadial was strongly influenced by seasonality. We evidence an anticorrelation between the variations of the δ18Oice sensitivity to temperature (referred to as α) and obliquity in agreement with a simple Rayleigh distillation model. Finally, we suggest that α might be influenced by the Northern Hemisphere ice sheet volume.