31 resultados para Copper(II) Complexes
Resumo:
There is an increasing demand for novel metal-based complexes with biologically relevant molecules in technology and medicine. Three new Cu(II) coordination compounds with antifungal agent isoconazole (L), namely mononuclear complexes CuCl2(L)(2) (1), and Cu(O2CMe)(2)(L)(2)center dot 2H(2)O (2) and coordination polymer Cu(pht)(L)(2)(n) (3) (where H(2)pht - o-phthalic acid) were synthesized and characterized by IR spectroscopy, thermogravimetric analysis and X-ray crystallography. X-ray analysis showed that in all complexes, the isoconazole is coordinated to Cu(II) centres by a N atom of the imidazole fragment. In complex I, the square-planar environment of Cu(II) atoms is completed by two N atoms of isoconazole and two chloride ligands, whereas the Cu(II) atoms are coordinated by two N atoms from two isoconazole ligands and two O atoms from the different carboxylate residues: acetate in 2 and phthalate in 3. The formation of an infinite chain through the bridging phthalate ligand is observed in 3. The biosynthetic ability of micromycetes Aspergillus niger CNMN FD 10 in the presence of the prepared complexes 1-3 as well as the antifungal drug isoconazole were studied. Complexes 2 and 3 accelerate the biosynthesis of enzymes (beta-glucosidase, xylanase and endoglucanase) by this fungus. Moreover, a simplified and improved method for the preparation of isoconazole nitrate was developed.
Resumo:
Bistriazoles, 1,3-bis(1,2,4-triazol-4-yl)propane (tr2pr) and 1,3-bis(1,2,4-triazol-4-yl)adamantane (tr2ad), were examined in combination with the rigid tetratopic 1,3,5,7-adamantanetetracarboxylic acid (H4-adtc) platform for the construction of neutral heteroleptic copper(II) metal−organic frameworks. Two coordination polymers, [{Cu4(OH)2(H2O)2}{Cu4(OH)2}(tr2pr)2(H-adtc)4]·2H2O (1) and [Cu4(OH)2(tr2ad)2(H-adtc)2(H2O)2]·3H2O (2), were synthesized and structurally characterized. In complexes 1 and 2, the N1,N2-1,2,4-triazolyl (tr) and μ3-OH− groups serve as complementary bridges between adjacent metal centers supporting the tetranuclear dihydroxo clusters. The structure of 1 represents a unique association of two different kinds of centrosymmetrical {Cu4(OH)2} units in a tight 3D framework, while in compound 2, another configuration type of acentric tetranuclear metal clusters is organized in a layered 3,6-hexagonal motif. In both cases, the {Cu4(OH)2} secondary building block and trideprotonated carboxylate H-adtc3− can be viewed as covalently bound six- and three-connected nodes that define the net topology. The tr ligands, showing μ3- or μ4-binding patterns, introduce additional integrating links between the neighboring {Cu4(OH)2} fragments. A variable-temperature magnetic susceptibility study of 2 demonstrates strong antiferromagnetic intracluster coupling (J1 = −109 cm−1 and J2 = −21 cm−1), which combines for the bulk phase with a weak antiferromagnetic intercluster interaction (zj = −2.5 cm−1).
Resumo:
Three new coordination polymers [M(Pht)(1-MeIm)2]n (where M=Cu (1), Zn (2), Co (3); Pht2−=dianion of o-phthalic acid; 1-MeIm=1-methylimidazole) and two compounds [M(1-MeIm)6](HPht)2 · 2H2O (M=Co (4), Ni (5)) have been synthesized and characterized by X-ray crystallography. The structures of 1–3 (2 is isostructural to 3) consist of [M(1-MeIm)2] building units connected by 1,6-bridging phthalate ions to form infinite chains. In complex 1, each copper(II) center adopts a square coordination mode of N2O2 type by two O atoms from different phthalate ions and two N atoms of 1-MeIm, whereas in 3 two independent metal atoms are tetrahedrally (N2O2) coordinated to a pair of Pht ligands and a pair of 1-MeIm molecules. There are only van der Waals interactions between the chains in 1, while the three-dimensional network in 3 is assembled by C–H⋯O contacts. In contrast to polymers 1–3 the structures of 4 and 5 (complexes are also isostructural) are made up of the [M(1-MeIm)6]2+ cation, two hydrogen phthalate anions (HPht−) and two H2O solvate molecules. The coordination around each metal(II) atom is octahedral with six nitrogen atoms of 1-MeIm. Extended hydrogen bonding networks embracing the solvate water molecules and a phthalate residue as well as the weak C–H⋯O interactions stabilize the three-dimensional structures. Magnetic studies clearly show that the magnetic ions do not interact with each other. Furthermore, in compound 4 we have another example of a highly anisotropic Co2+ ion with a rhombic g-tensor and large zero-field-splitting. The complexes were also characterized by IR and 1H NMR spectroscopy, thermogravimetric analysis, and all data are discussed in the terms of known structures.
Resumo:
The synthesis of three bis[(tert-butoxy)carbonyl]-protected (tetramine)dichloroplatinum complexes 2a – c of formula cis-[PtCl2(LL)] and of their cationic deprotected analogs 3a – c and their evaluation with respect to in vitro cytotoxicity, intramolecular stability, DNA binding, and cellular uptake is reported. The synthesis comprises the complexation of K2[PtCl4] with di-N-protected tetramines 1a – c to give 2a – c and subsequent acidolysis, yielding 3a – c. The cytotoxicity of the complexes is in direct relation to the length of the polyamine. Complexes 3a – c display a significant higher affinity for CT DNA as well as for cellular DNA in A2780 cells than cisplatin.