26 resultados para Conscious Perception


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In binocular rivalry, presentation of different images to the separate eyes leads to conscious perception alternating between the two possible interpretations every few seconds. During perceptual transitions, a stimulus emerging into dominance can spread in a wave-like manner across the visual field. These traveling waves of rivalry dominance have been successfully related to the cortical magnification properties and functional activity of early visual areas, including the primary visual cortex (V1). Curiously however, these traveling waves undergo a delay when passing from one hemifield to another. In the current study, we used diffusion tensor imaging (DTI) to investigate whether the strength of interhemispheric connections between the left and right visual cortex might be related to the delay of traveling waves across hemifields. We measured the delay in traveling wave times (ΔTWT) in 19 participants and repeated this test 6 weeks later to evaluate the reliability of our behavioral measures. We found large interindividual variability but also good test-retest reliability for individual measures of ΔTWT. Using DTI in connection with fiber tractography, we identified parts of the corpus callosum connecting functionally defined visual areas V1-V3. We found that individual differences in ΔTWT was reliably predicted by the diffusion properties of transcallosal fibers connecting left and right V1, but observed no such effect for neighboring transcallosal visual fibers connecting V2 and V3. Our results demonstrate that the anatomical characteristics of topographically specific transcallosal connections predict the individual delay of interhemispheric traveling waves, providing further evidence that V1 is an important site for neural processes underlying binocular rivalry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The right and left visual hemifields are represented in different cerebral hemispheres and are bound together by connections through the corpus callosum. Much has been learned on the functions of these connections from split-brain patients [1-4], but little is known about their contribution to conscious visual perception in healthy humans. We used diffusion tensor imaging and functional magnetic resonance imaging to investigate which callosal connections contribute to the subjective experience of a visual motion stimulus that requires interhemispheric integration. The "motion quartet" is an ambiguous version of apparent motion that leads to perceptions of either horizontal or vertical motion [5]. Interestingly, observers are more likely to perceive vertical than horizontal motion when the stimulus is presented centrally in the visual field [6]. This asymmetry has been attributed to the fact that, with central fixation, perception of horizontal motion requires integration across hemispheres whereas perception of vertical motion requires only intrahemispheric processing [7]. We are able to show that the microstructure of individually tracked callosal segments connecting motion-sensitive areas of the human MT/V5 complex (hMT/V5+; [8]) can predict the conscious perception of observers. Neither connections between primary visual cortex (V1) nor other surrounding callosal regions exhibit a similar relationship.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The response to pain involves a non-conscious, reflexive action and a conscious perception. According to Key (2016), consciousness — and thus pain perception — depends on a neuronal correlate that has a “unique neural architecture” as realized in the human cortex. On the basis of the “bioengineering principle that structure determines function,” Key (2016) concludes that animal species such as fish, which lack the requisite cortex-like neuroanatomical structure, are unable to feel pain. This commentary argues that the relationship between brain structure and brain function is less straightforward than suggested in Key’s target article.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pain and the conscious mind (or the self) are experienced in our body. Both are intimately linked to the subjective quality of conscious experience. Here, we used virtual reality technology and visuo-tactile conflicts in healthy subjects to test whether experimentally induced changes of bodily self-consciousness (self-location; self-identification) lead to changes in pain perception. We found that visuo-tactile stroking of a virtual body but not of a control object led to increased pressure pain thresholds and self-location. This increase was not modulated by the synchrony of stroking as predicted based on earlier work. This differed for self-identification where we found as predicted that synchrony of stroking increased self-identification with the virtual body (but not a control object), and positively correlated with an increase in pain thresholds. We discuss the functional mechanisms of self-identification, self-location, and the visual perception of human bodies with respect to pain perception.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zeki and co-workers recently proposed that perception can best be described as locally distributed, asynchronous processes that each create a kind of microconsciousness, which condense into an experienced percept. The present article is aimed at extending this theory to metacognitive feelings. We present evidence that perceptual fluency-the subjective feeling of ease during perceptual processing-is based on speed of processing at different stages of the perceptual process. Specifically, detection of briefly presented stimuli was influenced by figure-ground contrast, but not by symmetry (Experiment 1) or the font (Experiment 2) of the stimuli. Conversely, discrimination of these stimuli was influenced by whether they were symmetric (Experiment 1) and by the font they were presented in (Experiment 2), but not by figure-ground contrast. Both tasks however were related with the subjective experience of fluency (Experiments 1 and 2). We conclude that subjective fluency is the conscious phenomenal correlate of different processing stages in visual perception.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this clinical trial was to determine the active tactile sensibility of natural teeth and to obtain a statistical analysis method fitting a psychometric function through the observed data points. On 68 complete dentulous test persons (34 males, 34 females, mean age 45.9 ± 16.1 years), one pair of healthy natural teeth each was tested: n = 24 anterior teeth and n = 44 posterior teeth. The computer-assisted, randomized measurement was done by having the subjects bite on thin copper foils of different thickness (5-200 µm) inserted between the teeth. The threshold of active tactile sensibility was defined by the 50% value of correct answers. Additionally, the gradient of the sensibility curve and the support area (90-10% value) as a description of the shape of the sensibility curve were calculated. For modeling the sensibility curve, symmetric and asymmetric functions were used. The mean sensibility threshold was 14.2 ± 12.1 µm. The older the subject, the higher the tactile threshold (r = 0.42, p = 0.0006). The support area was 41.8 ± 43.3 µm. The higher the 50% threshold, the smaller the gradient of the curve and the larger the support area. The curves showing the active tactile sensibility of natural teeth demonstrate a tendency towards asymmetry, so that the active tactile sensibility of natural teeth can mathematically best be described by using the asymmetric Weibull function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humans perceive the content (gist) of a scene very rapidly within about 40 ms [Castelhano and Henderson, 2008 Journal of Experimental Psychology Human Perception and Performance 43(3) 660-675]. It has also been demonstrated that colours contribute to the perception of the gist of a scene if the colours are diagnostic for the distinction of scenes (Oliva and Schyns, 2000 Cognitive Psychology 41 176-210). We presented 320 coloured photographs of 2 diagnostic (mountains and coasts) and 2 nondiagnostic colour scenes (cities and rooms), 80 per category, in a masking paradigm. The mask consisted of randomly distributed colour patches. SOA was varied between 20 and 80 ms, in steps of 20 ms and subjects had to indicate the gist of the scene (4AFC). A control condition without masking was also included. In line with previous results we have found that the gist of nondiagnostic coloured scenes is extracted within 40 ms. However, if colour comes into play, the extraction of the scene gist is prolonged by about 20 ms. A possible reason for this outcome might be that nondiagnostic colour scenes are identified by their luminance components which are processed faster than the colour information, which in turn mediates the identification of diagnostic colour scenes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebral vasospasm after aneurysmal subarachnoid hemorrhage (aSAH) is a frequent but unpredictable complication associated with poor outcome. Current vasospasm therapies are suboptimal; new therapies are needed. Clazosentan, an endothelin receptor antagonist, has shown promise in phase 2 studies, and two randomized, double-blind, placebo-controlled phase 3 trials (CONSCIOUS-2 and CONSCIOUS-3) are underway to further investigate its impact on vasospasm-related outcome after aSAH. Here, we describe the design of these studies, which was challenging with respect to defining endpoints and standardizing endpoint interpretation and patient care. Main inclusion criteria are: age 18-75 years; SAH due to ruptured saccular aneurysm secured by surgical clipping (CONSCIOUS-2) or endovascular coiling (CONSCIOUS-3); substantial subarachnoid clot; and World Federation of Neurosurgical Societies grades I-IV prior to aneurysm-securing procedure. In CONSCIOUS-2, patients are randomized 2:1 to clazosentan (5 mg/h) or placebo. In CONSCIOUS-3, patients are randomized 1:1:1 to clazosentan 5, 15 mg/h, or placebo. Treatment is initiated within 56 h of aSAH and continued until 14 days after aSAH. Primary endpoint is a composite of mortality and vasospasm-related morbidity within 6 weeks of aSAH (all-cause mortality, vasospasm-related new cerebral infarction, vasospasm-related delayed ischemic neurological deficit, neurological signs or symptoms in the presence of angiographic vasospasm leading to rescue therapy initiation). Main secondary endpoint is extended Glasgow Outcome Scale at week 12. A critical events committee assesses all data centrally to ensure consistency in interpretation, and patient management guidelines are used to standardize care. Results are expected at the end of 2010 and 2011 for CONSCIOUS-2 and CONSCIOUS-3, respectively.