32 resultados para Conception of Philosophy
Resumo:
Comments on an article by Kashima et al. (see record 2007-10111-001). In their target article Kashima and colleagues try to show how a connectionist model conceptualization of the self is best suited to capture the self's temporal and socio-culturally contextualized nature. They propose a new model and to support this model, the authors conduct computer simulations of psychological phenomena whose importance for the self has long been clear, even if not formally modeled, such as imitation, and learning of sequence and narrative. As explicated when we advocated connectionist models as a metaphor for self in Mischel and Morf (2003), we fully endorse the utility of such a metaphor, as these models have some of the processing characteristics necessary for capturing key aspects and functions of a dynamic cognitive-affective self-system. As elaborated in that chapter, we see as their principal strength that connectionist models can take account of multiple simultaneous processes without invoking a single central control. All outputs reflect a distributed pattern of activation across a large number of simple processing units, the nature of which depends on (and changes with) the connection weights between the links and the satisfaction of mutual constraints across these links (Rummelhart & McClelland, 1986). This allows a simple account for why certain input features will at times predominate, while others take over on other occasions. (PsycINFO Database Record (c) 2008 APA, all rights reserved)
Resumo:
How do probabilistic models represent their targets and how do they allow us to learn about them? The answer to this question depends on a number of details, in particular on the meaning of the probabilities involved. To classify the options, a minimalist conception of representation (Su\'arez 2004) is adopted: Modelers devise substitutes (``sources'') of their targets and investigate them to infer something about the target. Probabilistic models allow us to infer probabilities about the target from probabilities about the source. This leads to a framework in which we can systematically distinguish between different models of probabilistic modeling. I develop a fully Bayesian view of probabilistic modeling, but I argue that, as an alternative, Bayesian degrees of belief about the target may be derived from ontic probabilities about the source. Remarkably, some accounts of ontic probabilities can avoid problems if they are supposed to apply to sources only.