21 resultados para Close
Resumo:
Benzodiazepines act at the major isoforms of GABA type A receptors where they potentiate the current evoked by the agonist GABA. The underlying mechanism of this potentiation is poorly understood, but hypothesized to be related to the mechanism that links agonist binding to channel opening in these ligand activated ion channels. The loop F of the ?(1) and the ?(2) subunit have been implicated in channel gating, and loop F of the ?(2) subunit in the modulation by benzodiazepines. We have identified the conservative point mutation Y168F located N-terminally of loop F in the ?(1) subunit that fails to affect agonist properties. Interestingly, it disrupts modulation by benzodiazepines, but leaves high affinity binding to the benzodiazepine binding site intact. Modulation by barbiturates and neurosteroids is also unaffected. Residue ?(1) Y168 is not located either near the binding pockets for GABA, or for benzodiazepines, or close to the loop F of the ?(2) subunit. Our results support the fact, that broader regions of ligand gated receptors are conformationally affected by the binding of benzodiazepines. We infer that also broader regions could contribute to signaling from GABA agonist binding to channel opening.
Resumo:
Horses are particularly prone to allergic and autoimmune diseases, but little information about equine regulatory T cells (Treg) is currently available. The aim of this study therefore was to investigate the existence of CD4(+) Treg cells in horses, determine their suppressive function as well as their mechanism of action. Freshly isolated peripheral blood mononuclear cells (PBMC) from healthy horses were examined for CD4, CD25 and forkhead box P3 (FoxP3) expression. We show that equine FoxP3 is expressed constitutively by a population of CD4(+) CD25(+) T cells, mainly in the CD4(+) CD25(high) subpopulation. Proliferation of CD4(+) CD25(-) sorted cells stimulated with irradiated allogenic PBMC was significantly suppressed in co-culture with CD4(+) CD25(high) sorted cells in a dose-dependent manner. The mechanism of suppression by the CD4(+) CD25(high) cell population is mediated by close contact as well as interleukin (IL)-10 and transforming growth factor-beta1 (TGF-beta1) and probably other factors. In addition, we studied the in vitro induction of CD4(+) Treg and their characteristics compared to those of freshly isolated CD4(+) Treg cells. Upon stimulation with a combination of concanavalin A, TGF-beta1 and IL-2, CD4(+) CD25(+) T cells which express FoxP3 and have suppressive capability were induced from CD4(+) CD25(-) cells. The induced CD4(+) CD25(high) express higher levels of IL-10 and TGF-beta1 mRNA compared to the freshly isolated ones. Thus, in horses as in man, the circulating CD4(+) CD25(high) subpopulation contains natural Treg cells and functional Treg can be induced in vitro upon appropriate stimulation. Our study provides the first evidence of the regulatory function of CD4(+) CD25(+) cells in horses and offers insights into ex vivo manipulation of Treg cells.
Resumo:
This paper presents a novel technique to create a computerized fluoroscopy with zero-dose image updates for computer-assisted fluoroscopy-based close reduction and osteosynthesis of diaphyseal fracture of femurs. With the novel technique, repositioning of bone fragments during close fracture reduction will lead to image updates in each acquired imaging plane, which is equivalent to using several fluoroscopes simultaneously from different directions but without any X-ray radiation. Its application facilitates the whole fracture reduction and osteosynthesis procedure when combining with the existing leg length and antetorsion restoration methods and may result in great reduction of the X-ray radiation to the patient and to the surgical team. In this paper, we present the approach for achieving such a technique and the experimental results with plastic bones.
Resumo:
The objective of modern transmission electron microscopy (TEM) in life science is to observe biological structures in a state as close as possible to the living organism. TEM samples have to be thin and to be examined in vacuum; therefore only solid samples can be investigated. The most common and popular way to prepare samples for TEM is to subject them to chemical fixation, staining, dehydration, and embedding in a resin (all of these steps introduce considerable artifacts) before investigation. An alternative is to immobilize samples by cooling. High pressure freezing is so far the only approach to vitrify (water solidification without ice crystal formation) bulk biological samples of about 200 micrometer thick. This method leads to an improved ultrastructural preservation. After high pressure freezing, samples have to be subjected to follow-up procedure, such as freeze-substitution and embedding. The samples can also be sectioned into frozen hydrated sections and analyzed in a cryo-TEM. Also for immunocytochemistry, high pressure freezing is a good and practicable way.
Resumo:
Pharmaceuticals are ubiquitous in surface waters as a consequence of discharges from municipal wastewater treatment plants. However, few studies have assessed the bioavailability of pharmaceuticals to fish in natural waters. In the present study, passive samplers and rainbow trout were experimentally deployed next to three municipal wastewater treatment plants in Finland to evaluate the degree of animal exposure. Pharmaceuticals from several therapeutic classes (in total 15) were analyzed by liquid chromatography-tandem mass spectrometry in extracts of passive samplers and in bile and blood plasma of rainbow trout held at polluted sites for 10 d. Each approach indicated the highest exposure near wastewater treatment plant A and the lowest near that of plant C. Diclofenac, naproxen, and ibuprofen were found in rainbow trout, and their concentrations in bile were 10 to 400 times higher than in plasma. The phase I metabolite hydroxydiclofenac was also detected in bile. Hence, bile proved to be an excellent sample matrix for the exposure assessment of fish. Most of the monitored pharmaceuticals were found in passive samplers, implying that they may overestimate the actual exposure of fish in receiving waters. Two biomarkers, hepatic vitellogenin and cytochrome P4501A, did not reveal clear effects on fish, although a small induction of vitellogenin mRNA was observed in trout caged near wastewater treatment plants B and C.
Resumo:
We have shown previously that the raft-associated proteins flotillin-1 and -2 are rapidly recruited to the uropods of chemoattractant-stimulated human neutrophils and T-cells and are involved in cell polarization. Other proteins such as the adhesion receptor PSGL-1, the actin-membrane linker proteins ezrin/radixin/moesin (ERM) and the signaling enzyme phosphatidylinositol-4-phosphate 5-kinase type Iγ90 (PIPKIγ90) also accumulate in the T-cell uropod. Using the in situ proximity ligation assay (PLA) we now have investigated putative close associations of these proteins in human freshly isolated T-cells before and after chemokine addition. The PLA allows in situ subcellular localization of close proximity of endogenous proteins at single-molecule resolution in fixed cells. It allows detection also of weaker and transient complexes that would not be revealed with co-immunoprecipitation approaches. We previously provided evidence for heterodimer formation of tagged flotillin-1 and -2 in T-cells before and after chemokine addition using fluorescence resonance energy transfer (FRET). We now confirm these findings using PLA for the endogenous flotillins in fixed human T-cells. Moreover, in agreement with the literature, our PLA findings confirm a close association of endogenous PSGL-1 and ERM proteins both in resting and chemokine-activated human T-cells. In addition, we provide novel evidence using the PLA for close associations of endogenous activated ERM proteins with PIPKIγ90 and of endogenous flotillins with PSGL-1 in human T-cells, before and after chemokine addition. Our findings suggest that preformed clusters of these proteins coalesce in the uropod upon cell stimulation.