18 resultados para Chemistry reactivity
Resumo:
The reactivity of three hexacationic arene ruthenium metallaprisms towards isolated nucleotides and a short DNA strand was investigated using NMR spectroscopy, ESI mass spectrometry, UV/Vis and circular dichroism spectroscopy. The metallaprism built from oxalato-bridging ligands reacts rapidly in the presence of deoxyguanosine monophosphate (dGMP) and deoxyadenosine monophosphate, while the benzoquinonato derivative only reacts with dGMP. On the other hand, the larger metallaprism incorporating naphtoquinonato bridges remains stable in the presence of nucleotides. The reactivity of the three hexacationic metallaprisms with the decameric oligonucleotide d(CGCGATCGCG)2 was also investigated. Analysis of the NMR, MS, UV/Vis and CD data suggests that no adducts are formed between the oligonucleotide and the metallaprisms, but electrostatic interactions, leading to partial unwinding of the double-stranded oligonucleotide, were evidenced
Resumo:
A direct electron transfer process between bacterial cells of electrogenic species Geobacter sulfurreducens (Gs) and electrified electrode surfaces was studied to exploit the reactivity of Gs submonolayers on gold and silver surfaces. A submonolayer of Gs was prepared and studied to explore specifically the heterogeneous electron transfer properties at the bacteria/electrode interface. In situ microscopic techniques characterised the morphology of the Gs submonolayers under the operating conditions. In addition, complementary in situ spectroscopic techniques that allowed us to access in situ molecular information of the Gs with high surface selectivity and sensitivity were employed. The results provided clear evidence that the outermost cytochrome C in Gs is responsible for the heterogeneous electron transfer, which is in direct contact with the metal electrode. Feasibility of single cell in situ studies under operating conditions was demonstrated where the combination of surface-electrochemical tools at the nano- and micro-scale with microbiological approaches can offer unique opportunities for the emerging field of electro-microbiology to explore processes and interactions between microorganisms and electrical devices.
Resumo:
The bioelectrocatalytic (oxygen reduction reaction, ORR) properties of the multicopper oxidase CueO immobilized on gold electrodes were investigated. Macroscopic electrochemical techniques were combined with in situ scanning tunneling microscopy (STM) and surface-enhanced Raman spectroscopy at the ensemble and at the single-molecule level. Self-assembled monolayer of mercaptopropionic acid, cysteamine, and p-aminothiophenol were chosen as redox mediators. The highest ORR activity was observed for the protein attached to amino-terminated adlayers. In situ STM experiments revealed that the presence of oxygen causes distinct structure and electronic changes in the metallic centers of the enzyme, which determine the rate of intramolecular electron transfer and, consequently, affect the rate of electron tunneling through the protein. Complementary Raman spectroscopy experiments provided access for monitoring structural changes in the redox state of the type 1 copper center of the immobilized enzyme during the CueO-catalyzed oxygen reduction cycle. These results unequivocally demonstrate the existence of a direct electronic communication between the electrode substrate and the type 1 copper center.