106 resultados para CLOSED ORBIT
Resumo:
Stereology is an essential method for quantitative analysis of lung structure. Adequate fixation is a prerequisite for stereological analysis to avoid bias in pulmonary tissue, dimensions and structural details. We present a technique for in situ fixation of large animal lungs for stereological analysis, based on closed loop perfusion fixation.
Resumo:
To evaluate the safety of a new ultravitrification closed device.
Resumo:
IgE antibodies interact with the high affinity IgE Fc receptor, FcεRI, and activate inflammatory pathways associated with the allergic response. The IgE-Fc region, comprising the C-terminal domains of the IgE heavy chain, binds FcεRI and can adopt different conformations ranging from a closed form incompatible with receptor binding to an open, receptor-bound state. A number of intermediate states are also observed in different IgE-Fc crystal forms. To further explore this apparent IgE-Fc conformational flexibility and to potentially trap a closed, inactive state, we generated a series of disulfide bond mutants. Here we describe the structure and biochemical properties of an IgE-Fc mutant that is trapped in the closed, non-receptor binding state via an engineered disulfide at residue 335 (Cys-335). Reduction of the disulfide at Cys-335 restores the ability of IgE-Fc to bind to its high affinity receptor, FcεRIα. The structure of the Cys-335 mutant shows that its conformation is within the range of previously observed, closed form IgE-Fc structures and that it retains the hydrophobic pocket found in the hinge region of the closed conformation. Locking the IgE-Fc into the closed state with the Cys-335 mutation does not affect binding of two other IgE-Fc ligands, omalizumab and DARPin E2_79, demonstrating selective blocking of the high affinity receptor binding.