138 resultados para Brain damage - Patients - Rehabilitation
Resumo:
Introduction Language is the most important mean of communication and plays a central role in our everyday life. Brain damage (e.g. stroke) can lead to acquired disorders of lan- guage affecting the four linguistic modalities (i.e. reading, writing, speech production and comprehension) in different combinations and levels of severity. Every year, more than 5000 people (Aphasie Suisse) are affected by aphasia in Switzerland alone. Since aphasia is highly individual, the level of difficulty and the content of tasks have to be adapted continuously by the speech therapists. Computer-based assignments allow patients to train independently at home and thus increasing the frequency of ther- apy. Recent developments in tablet computers have opened new opportunities to use these devices for rehabilitation purposes. Especially older people, who have no prior experience with computers, can benefit from the new technologies. Methods The aim of this project was to develop an application that enables patients to train language related tasks autonomously and, on the other hand, allows speech therapists to assign exercises to the patients and to track their results online. Seven categories with various types of assignments were implemented. The application has two parts which are separated by a user management system into a patient interface and a therapist interface. Both interfaces were evaluated using the SUS (Subject Usability Scale). The patient interface was tested by 15 healthy controls and 5 patients. For the patients, we also collected tracking data for further analysis. The therapist interface was evaluated by 5 speech therapists. Results The SUS score are xpatients = 98 and xhealthy = 92.7 (median = 95, SD = 7, 95% CI [88.8, 96.6]) in case of the patient interface and xtherapists = 68 in case of the therapist interface. Conclusion Both, the patients and the healthy subjects, attested high SUS scores to the patient interface. These scores are considered as "best imaginable". The therapist interface got a lower SUS score compared to the patient interface, but is still considered as "good" and "usable". The user tracking system and the interviews revealed that there is room for improvements and inspired new ideas for future versions.
Resumo:
Recovery from eye movement deficits after cortical lesions is amazingly rapid and almost complete, which is in sharp contrast to most other neurological deficits of cerebral lesions. The underlying mechanisms of this successful recovery remain uncertain. We had the rare opportunity to examine two patients with recovery from saccade deficits after a lesion restricted to the frontal eye field (FEF) by means of transcranial magnetic stimulation (TMS). The results provide direct evidence that recovery depended on the integrity of the oculomotor regions of the nonlesioned contralesional hemisphere, and that the compensatory network is task-specific.
Resumo:
Multiplication of bacteria within the central nervous system compartment triggers a host response with an overshooting inflammatory reaction which leads to brain parenchyma damage. Some of the inflammatory and neurotoxic mediators involved in the processes leading to neuronal injury during bacterial meningitis have been identified in recent years. As a result, the therapeutic approach to the disease has widened from eradication of the bacterial pathogen with antibiotics to attenuation of the detrimental effects of host defences. Corticosteroids represent an example of the adjuvant therapeutic strategies aimed at downmodulating excessive inflammation in the infected central nervous system. Pathophysiological concepts derived from an experimental rat model of bacterial meningitis revealed possible therapeutic strategies for prevention of brain damage. The insights gained led to the evaluation of new therapeutic modalities such as anticytokine agents, matrix metalloproteinase inhibitors, antioxidants, and antagonists of endothelin and glutamate. Bacterial meningitis is still associated with persistent neurological sequelae in approximately one third of surviving patients. Future research in the model will evaluate whether the neuroprotective agents identified so far have the potential to attenuate learning disabilities as a long-term consequence of bacterial meningitis.
Resumo:
BACKGROUND High mortality and morbidity rates are observed in patients with bacterial meningitis (BM) and urge for new adjuvant treatments in addition to standard antibiotic therapies. In BM the hippocampal dentate gyrus is injured by apoptosis while in cortical areas ischemic necrosis occurs. Experimental therapies aimed at reducing the inflammatory response and brain damage have successfully been evaluated in animal models of BM. Fluoxetine (FLX) is an anti-depressant of the selective serotonin reuptake inhibitors (SSRI) and was previously shown to be neuroprotective in vitro and in vivo. We therefore assessed the neuroprotective effect of FLX in experimental pneumococcal meningitis. METHODS Infant rats were infected intracisternally with live Streptococcus pneumoniae. Intraperitoneal treatment with FLX (10mgkg(-1)d(-1)) or an equal volume of NaCl was initiated 15min later. 18, 27, and 42h after infection, the animals were clinically (weight, clinical score, mortality) evaluated and subject to a cisternal puncture and inflammatory parameters (i.e., cyto-/chemokines, myeloperoxidase activity, matrix metalloproteinase concentrations) were measured in cerebrospinal fluid (CSF) samples. At 42h after infection, animals were sacrificed and the brains collected for histomorphometrical analysis of brain damage. RESULTS A significant lower number of animals treated with FLX showed relevant hippocampal apoptosis when compared to littermates (9/19 animals vs 18/23, P=0.038). A trend for less damage in cortical areas was observed in FLX-treated animals compared to controls (13/19 vs 13/23, P=ns). Clinical and inflammatory parameters were not affected by FLX treatment. CONCLUSION A significant neuroprotective effect of FLX on the hippocampus was observed in acute pneumococcal meningitis in infant rats.
Resumo:
Exacerbation of cerebrospinal fluid (CSF) inflammation in response to bacteriolysis by beta-lactam antibiotics contributes to brain damage and neurological sequelae in bacterial meningitis. Daptomycin, a nonlytic antibiotic acting on Gram-positive bacteria, lessens inflammation and brain injury compared to ceftriaxone. With a view to a clinical application for pediatric bacterial meningitis, we investigated the effect of combining daptomycin or rifampin with ceftriaxone in an infant rat pneumococcal meningitis model. Eleven-day-old Wistar rats with pneumococcal meningitis were randomized to treatment starting at 18 h after infection with (i) ceftriaxone (100 mg/kg of body weight, subcutaneously [s.c.], twice a day [b.i.d.]), (ii) daptomycin (10 mg/kg, s.c., daily) followed 15 min later by ceftriaxone, or (iii) rifampin (20 mg/kg, intraperitoneally [i.p.], b.i.d.) followed 15 min later by ceftriaxone. CSF was sampled at 6 and 22 h after the initiation of therapy and was assessed for concentrations of defined chemokines and cytokines. Brain damage was quantified by histomorphometry at 40 h after infection and hearing loss was assessed at 3 weeks after infection. Daptomycin plus ceftriaxone versus ceftriaxone significantly (P < 0.04) lowered CSF concentrations of monocyte chemoattractant protein 1 (MCP-1), MIP-1α, and interleukin 6 (IL-6) at 6 h and MIP-1α, IL-6, and IL-10 at 22 h after initiation of therapy, led to significantly (P < 0.01) less apoptosis, and significantly (P < 0.01) improved hearing capacity. While rifampin plus ceftriaxone versus ceftriaxone also led to lower CSF inflammation (P < 0.02 for IL-6 at 6 h), it had no significant effect on apoptosis and hearing capacity. Adjuvant daptomycin could therefore offer added benefits for the treatment of pediatric pneumococcal meningitis.
Resumo:
Adverse outcome in bacterial meningitis is associated with the breakdown of the blood-brain barrier (BBB). Matrix-metalloproteinases (MMPs) facilitate this process by degradation of components of the BBB. This in turn results in acute complications of bacterial meningitis including edema formation, increased intracranial pressure and subsequent ischemia. We determined the parenchymal balance of MMP-9 and TIMP-1 (tissue inhibitor of MMP) and the structural integrity of the BBB in relation to cortical damage in an infant rat model of pneumococcal meningitis. The data demonstrate that the extent of cortical damage is significantly associated with parenchymal gelatinolytic activity and collagen type IV degradation. The increased gelatinolysis was found to be associated with a brain parenchymal imbalance of MMP-9/TIMP-1. These findings provide support to the concept that MMPs mediated disruption of the BBB contributes to the pathogenesis of bacterial meningitis and that protection of the vascular unit may have neuroprotective potential.
Resumo:
Bacterial meningitis due to Streptococcus pneumoniae is associated with an significant mortality rate and persisting neurologic sequelae including sensory-motor deficits, seizures, and impairments of learning and memory. The histomorphological correlate of these sequelae is a pattern of brain damage characterized by necrotic tissue damage in the cerebral cortex and apoptosis of neurons in the hippocampal dentate gyrus. Different animal models of pneumococcal meningitis have been developed to study the pathogenesis of the disease. To date, the infant rat model is unique in mimicking both forms of brain damage documented in the human disease. In the present study, we established an infant mouse model of pneumococcal meningitis. Eleven-days-old C57BL/6 (n = 299), CD1 (n = 42) and BALB/c (n = 14) mice were infected by intracisternal injection of live Streptococcus pneumoniae. Sixteen hours after infection, all mice developed meningitis as documented by positive bacterial cultures of the cerebrospinal fluid. Sixty percent of infected C57BL/6 mice survived more than 40 h after infection (50% of CD1, 0% of BALB/c). Histological evaluations of brain sections revealed apoptosis in the dentate gyrus of the hippocampus in 27% of infected C57BL/6 and in 5% of infected CD1 mice. Apoptosis was confirmed by immunoassaying for active caspase-3 and by TUNEL staining. Other forms of brain damage were found exclusively in C57BL/6, i.e. caspase-3 independent (pyknotic) cell death in the dentate gyrus in 2% and cortical damage in 11% of infected mice. This model may prove useful for studies on the pathogenesis of brain injury in childhood bacterial meningitis.
Resumo:
The present study was performed to evaluate the role of matrix metalloproteinases (MMP) in the pathogenesis of the inflammatory reaction and the development of neuronal injury in a rat model of bacterial meningitis. mRNA encoding specific MMPs (MMP-3, MMP-7, MMP-8, and MMP-9) and the inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) were significantly (P < 0.04) upregulated, compared to the beta-actin housekeeping gene, in cortical homogenates at 20 h after infection. In parallel, concentrations of MMP-9 and TNF-alpha in cerebrospinal fluid (CSF) were significantly increased in rats with bacterial meningitis compared to uninfected animals (P = 0.002) and showed a close correlation (r = 0.76; P < 0. 001). Treatment with a hydroxamic acid-type MMP inhibitor (GM6001; 65 mg/kg intraperitoneally every 12 h) beginning at the time of infection significantly lowered the MMP-9 (P < 0.02) and TNF-alpha (P < 0.02) levels in CSF. Histopathology at 25.5 +/- 5.7 h after infection showed neuronal injury (median [range], 3.5% [0 to 17.5%] of the cortex), which was significantly (P < 0.01) reduced to 0% (0 to 10.8%) by GM6001. This is the first report to demonstrate that MMPs contribute to the development of neuronal injury in bacterial meningitis and that inhibition of MMPs may be an effective approach to prevent brain damage as a consequence of the disease.
Resumo:
TLR2 signaling participates in the pathogenesis of pneumococcal meningitis. In infant rats, the TLR2 agonist Pam(3)CysSK(4) was applied intracisternally (0.5 microg in 10 microl saline) alone or after induction of pneumococcal meningitis to investigate the effect of TLR2 activation on cerebrospinal fluid (CSF) inflammation and hippocampal apoptosis. A dose effect of Pam(3)CysSK(4) on apoptosis was investigated by intracisternal application of 0.5 microg in 10 microl saline and 40 microg in 20 microl saline. Pam(3)CysSK(4) neither induced apoptosis in sham-operated mice nor aggravated apoptosis in acute infection. However, Pam(3)CysSK(4) induced pleocytosis, TNF-alpha and MMP-9 in CSF in sham-infection but not during acute meningitis. We conclude that TLR2 signaling triggered by Pam(3)CysSK(4) at a dosage capable to induce a neuroinflammatory response does not induce hippocampal apoptosis in the infant rat model of experimental pneumococcal meningitis.
Resumo:
Perinatal brain damage is associated not only with hypoxic-ischemic insults but also with intrauterine inflammation. A combination of antenatal inflammation and asphyxia increases the risk of cerebral palsy >70 times. The aim of the present study was to determine the effect of intracisternal (i.c.) administration of endotoxin [lipopolysaccharides (LPS)] on subsequent hypoxic-ischemic brain damage in neonatal rats. Seven-day-old Wistar rats were subjected to i.c. application of NaCl or LPS (5 microg/pup). One hour later, the left common carotid artery was exposed through a midline neck incision and ligated with 6-0 surgical silk. After another hour of recovery, the pups were subjected to a hypoxic gas mixture (8% oxygen/92% nitrogen) for 60 min. The animals were randomized to four experimental groups: 1) sham control group, left common carotid artery exposed but not ligated (n = 5); 2) LPS group, subjected to i.c. application of LPS (n = 7); 3) hypoxic-ischemic study group, i.c. injection of NaCl and exposure to hypoxia after ligation of the left carotid artery (n = 17); or 4) hypoxic-ischemic/LPS study group, i.c. injection of LPS and exposure to hypoxia after ligation of the left carotid artery (n = 19). Seven days later, neonatal brains were assessed for neuronal cell damage. In a second set of experiments, rat pups received an i.c. injection of LPS (5 microg/pup) and were evaluated for tumor necrosis factor-alpha expression by immunohistochemistry. Neuronal cell damage could not be observed in the sham control or in the LPS group. In the hypoxic-ischemic/LPS group, neuronal injury in the cerebral cortex was significantly higher than in animals that were subjected to hypoxia/ischemia after i.c. application of NaCl. Injecting LPS intracisternally caused a marked expression of tumor necrosis factor-alpha in the leptomeninges. Applying LPS intracisternally sensitizes the immature rat brain to a subsequent hypoxic-ischemic insult.
Resumo:
Medical doctors often do not trust the result of fully automatic segmentations because they have no possibility to make corrections if necessary. On the other hand, manual corrections can introduce a user bias. In this work, we propose to integrate the possibility for quick manual corrections into a fully automatic segmentation method for brain tumor images. This allows for necessary corrections while maintaining a high objectiveness. The underlying idea is similar to the well-known Grab-Cut algorithm, but here we combine decision forest classification with conditional random field regularization for interactive segmentation of 3D medical images. The approach has been evaluated by two different users on the BraTS2012 dataset. Accuracy and robustness improved compared to a fully automatic method and our interactive approach was ranked among the top performing methods. Time for computation including manual interaction was less than 10 minutes per patient, which makes it attractive for clinical use.
Resumo:
BACKGROUND Gambling is a form of nonsubstance addiction classified as an impulse control disorder. Pathologic gamblers are considered healthy with respect to their cognitive status. Lesions of the frontolimbic systems, mostly of the right hemisphere, are associated with addictive behavior. Because gamblers are not regarded as "brain-lesioned" and gambling is nontoxic, gambling is a model to test whether addicted "healthy" people are relatively impaired in frontolimbic neuropsychological functions. METHODS Twenty-one nonsubstance dependent gamblers and nineteen healthy subjects underwent a behavioral neurologic interview centered on incidence, origin, and symptoms of possible brain damage, a neuropsychological examination, and an electroencephalogram. RESULTS Seventeen gamblers (81%) had a positive medical history for brain damage (mainly traumatic head injury, pre- or perinatal complications). The gamblers, compared with the controls, were significantly more impaired in concentration, memory, and executive functions, and evidenced a higher prevalence of non-right-handedness (43%) and, non-left-hemisphere language dominance (52%). Electroencephalogram (EEG) revealed dysfunctional activity in 65% of the gamblers, compared with 26% of controls. CONCLUSIONS This study shows that the "healthy" gamblers are indeed brain-damaged. Compared with a matched control population, pathologic gamblers evidenced more brain injuries, more fronto-temporo-limbic neuropsychological dysfunctions and more EEG abnormalities. The authors thus conjecture that addictive gambling may be a consequence of brain damage, especially of the frontolimbic systems, a finding that may well have medicolegal consequences.