144 resultados para Assael, Jacqueline
Resumo:
Mechanical stress controls a broad range of cellular functions. The cytoskeleton is physically connected to the extracellular matrix via integrin receptors, and to the nuclear lamina by the LINC complex that spans both nuclear membranes. We asked here how disruption of this direct link from the cytoskeleton to nuclear chromatin affects mechanotransduction. Fibroblasts grown on flexible silicone membranes reacted to cyclic stretch by nuclear rotation. This rotation was abolished by inhibition of actomyosin contraction as well as by overexpression of dominant-negative versions of nesprin or sun proteins that form the LINC complex. In an in vitro model of muscle differentiation, cyclic strain inhibits differentiation and induces proliferation of C2C12 myoblasts. Interference with the LINC complex in these cells abrogated their stretch-induced proliferation, while stretch increased p38 MAPK and NFkappaB phosphorylation and the transcript levels of myogenic transcription factors MyoD and myogenin. We found that the physical link from the cytoskeleton to the nuclear lamina is crucial for correct mechanotransduction, and that disruption of the LINC complex perturbs the mechanical control of cell differentiation.
Resumo:
Quantitative data on ventilation during acclimatization at very high altitude are scant. Therefore, we monitored nocturnal ventilation and oxygen saturation in mountaineers ascending Mt. Muztagh Ata (7,546 m).
Resumo:
to report acute and late toxicity in prostate cancer patients treated by high-dose intensity-modulated radiation therapy (IMRT) with daily image-guidance.
Resumo:
Using bioinformatics tools, we searched the predicted Theileria annulata and T. parva proteomes for putative schizont surface proteins. This led to the identification of gp34, a GPI-anchored protein that is stage-specifically expressed by schizonts of both Theileria species and is downregulated upon induction of merogony. Transfection experiments in HeLa cells showed that the gp34 signal peptide and GPI anchor signal are also functional in higher eukaryotes. Epitope-tagged Tp-gp34, but not Ta-gp34, expressed in the cytosol of COS-7 cells was found to localise to the central spindle and midbody. Overexpression of Tp-gp34 and Ta-gp34 induced cytokinetic defects and resulted in accumulation of binucleated cells. These findings suggest that gp34 could contribute to important parasite-host interactions during host cell division.
Resumo:
Data on changes of haemostatic parameters at altitudes above 5000 m are very limited. So far it is unknown, whether altered coagulation could contribute to the development of acute mountain sickness.
Resumo:
The extracellular matrix protein tenascin-C (TNC) is up-regulated in processes influenced by mechanical stress, such as inflammation, tissue remodeling, wound healing, and tumorigenesis. Cyclic strain-induced TNC expression depends on RhoA-actin signaling, the pathway that regulates transcriptional activity of serum response factor (SRF) by its coactivator megakaryoblastic leukemia-1 (MKL1). Therefore, we tested whether MKL1 controls TNC transcription. We demonstrate that overexpression of MKL1 strongly induces TNC expression in mouse NIH3T3 fibroblasts and normal HC11 and transformed 4T1 mammary epithelial cells. Part of the induction was dependant on SRF and a newly identified atypical CArG box in the TNC promoter. Another part was independent of SRF but required the SAP domain of MKL1. An MKL1 mutant incapable of binding to SRF still strongly induced TNC, while induction of the SRF target c-fos was abolished. Cyclic strain failed to induce TNC in MKL1-deficient but not in SRF-deficient fibroblasts, and strain-induced TNC expression strongly depended on the SAP domain of MKL1. Promoter-reporter and chromatin immunoprecipitation experiments unraveled a SAP-dependent, SRF-independent interaction of MKL1 with the proximal promoter region of TNC, attributing for the first time a functional role to the SAP domain of MKL1 in regulating gene expression.
Resumo:
Tenascins are extracellular matrix glycoproteins associated with cell motility, proliferation and differentiation. Tenascin-C inhibits cell spreading by binding to fibronectin; tenascin-R and tenascin-X also have anti-adhesive properties in vitro. Here we have studied the adhesion modulating properties of the most recently characterized tenascin, tenascin-W. C2C12 cells, a murine myoblast cell line, will form broad lamellipodia with stress fibers and focal adhesion complexes after culture on fibronectin. In contrast, C2C12 cells cultured on tenascin-W fail to spread and form stress fibers or focal adhesion complexes, and instead acquire a multipolar shape with short, actin-tipped pseudopodia. The same stellate morphology is observed when C2C12 cells are cultured on a mixture of fibronectin and tenascin-W, or on fibronectin in the presence of soluble tenascin-W. Tenascin-W combined with fibronectin also inhibits the spreading of mouse embryo fibroblasts when compared with cells cultured on fibronectin alone. The similarity between the adhesion modulating effects of tenascin-W and tenascin-C in vitro led us to study the possibility of tenascin-W compensating for tenascin-C in tenascin-C knockout mice, especially during epidermal wound healing. Dermal fibroblasts harvested from a tenascin-C knockout mouse express tenascin-W, but dermal fibroblasts taken from a wild type mouse do not. However, there is no upregulation of tenascin-W in the dermis of tenascin-C knockout mice, or in the granulation tissue of skin wounds in tenascin-C knockout animals. Similarly, tenascin-X is not upregulated in early wound granulation tissue in the tenascin-C knockout mice. Thus, tenascin-W is able to inhibit cell spreading in vitro and it is upregulated in dermal fibroblasts taken from the tenascin-C knockout mouse, but neither it nor tenascin-X are likely to compensate for missing tenascin-C during wound healing.