46 resultados para Aspect verbal
Resumo:
PURPOSE: Assessment of language dominance with functional magnetic resonance imaging (fMRI) and neuropsychological evaluation is often used prior to epilepsy surgery. This study explores whether language lateralization and cognitive performance are systematically related in young patients with focal epilepsy. METHODS: Language fMRI and neuropsychological data (language, visuospatial functions, and memory) of 40 patients (7-18 years of age) with unilateral, refractory focal epilepsy in temporal and/or frontal areas of the left (n = 23) or right hemisphere (n = 17) were analyzed. fMRI data of 18 healthy controls (7-18 years) served as a normative sample. A laterality index was computed to determine the lateralization of activation in three regions of interest (frontal, parietal, and temporal). RESULTS: Atypical language lateralization was demonstrated in 12 (30%) of 40 patients. A correlation between language lateralization and verbal memory performance occurred in patients with left-sided epilepsy over all three regions of interest, with bilateral or right-sided language lateralization being correlated with better verbal memory performance (Word Pairs Recall: frontal r = -0.4, p = 0.016; parietal r = -0.4, p = 0.043; temporal r = -0.4, p = 0.041). Verbal memory performance made the largest contribution to language lateralization, whereas handedness and side of seizures did not contribute to the variance in language lateralization. DISCUSSION: This finding reflects the association between neocortical language and hippocampal memory regions in patients with left-sided epilepsy. Atypical language lateralization is advantageous for verbal memory performance, presumably a result of transfer of verbal memory function. In children with focal epilepsy, verbal memory performance provides a better idea of language lateralization than handedness and side of epilepsy and lesion.
Resumo:
To describe the mechanics and possible clinical importance of left ventricular (LV) rotation, exemplify techniques to quantify LV rotation and illustrate the temporal relationship of cardiac pressures, electrocardiogram and LV rotation.
Resumo:
Investigations of gray matter changes in relation with auditory verbal hallucinations (AVH) have reported conflicting results. Assuming that alterations in gray matter might be related to certain symptoms in schizophrenia this study aimed to investigate changes in cortical thickness specific to AVH. It was hypothesized that schizophrenia patients suffering from persistent AVH would show significant differences in cortical thickness in regions involved in language-production and perception when compared to schizophrenia patients which had never experienced any hallucinations.
Resumo:
Abnormal perceptions and cognitions in schizophrenia might be related to abnormal resting states of the brain. Previous research found that a specific class (class D) of sub-second electroencephalography (EEG) microstates was shortened in schizophrenia. This shortening correlated with positive symptoms. We questioned if this reflected positive psychotic traits or present psychopathology.
Resumo:
Auditory hallucinations comprise a critical domain of psychopathology in schizophrenia. Repetitive transcranial magnetic stimulation (TMS) has shown promise as an intervention with both positive and negative reports. The aim of this study was to test resting-brain perfusion before treatment as a possible biological marker of response to repetitive TMS. Twenty-four medicated patients underwent resting-brain perfusion magnetic resonance imaging with arterial spin labeling (ASL) before 10 days of repetitive TMS treatment. Response was defined as a reduction in the hallucination change scale of at least 50%. Responders (n=9) were robustly differentiated from nonresponders (n=15) to repetitive TMS by the higher regional cerebral blood flow (CBF) in the left superior temporal gyrus (STG) (P<0.05, corrected) before treatment. Resting-brain perfusion in the left STG predicted the response to repetitive TMS in this study sample, suggesting this parameter as a possible bio-marker of response in patients with schizophrenia and auditory hallucinations. Being noninvasive and relatively easy to use, resting perfusion measurement before treatment might be a clinically relevant way to identify possible responders and nonresponders to repetitive TMS.
Resumo:
Transcranial magnetic stimulation (TMS) is a novel therapeutic approach, used in patients with pharmacoresistant auditory verbal hallucinations (AVH). To investigate the neurobiological effects of TMS on AVH, we measured cerebral blood flow with pseudo-continuous magnetic resonance-arterial spin labeling 20 ± 6 hours before and after TMS treatment.
Resumo:
In this article, we will link neuroimaging, data analysis, and intervention methods in an important psychiatric condition: auditory verbal hallucinations (AVH). The clinical and phenomenological background as well as neurophysiological findings will be covered and discussed with respect to noninvasive brain stimulation. Additionally, methods of noninvasive brain stimulation will be presented as ways to intervene with AVH. Finally, preliminary conclusions and possible future perspectives will be proposed.
Resumo:
Auditory verbal hallucinations (AVH) in schizophrenia patients assumingly result from a state inadequate activation of the primary auditory system. We tested brain responsiveness to auditory stimulation in healthy controls (n=26), and in schizophrenia patients that frequently (n=18) or never (n=11) experienced AVH. Responsiveness was assessed by driving the EEG with click-tones at 20, 30 and 40Hz. We compared stimulus induced EEG changes between groups using spectral amplitude maps and a global measure of phase-locking (GFS). As expected, the 40Hz stimulation elicited the strongest changes. However, while controls and non-hallucinators increased 40Hz EEG activity during stimulation, a left-lateralized decrease was observed in the hallucinators. These differences were significant (p=.02). As expected, GFS increased during stimulation in controls (p=.08) and non-hallucinating patients (p=.06), which was significant when combining the two groups (p=.01). In contrast, GFS decreased with stimulation in hallucinating patients (p=0.13), resulting in a significantly different GFS response when comparing subjects with and without AVH (p<.01). Our data suggests that normally, 40Hz stimulation leads to the activation of a synchronized network representing the sensory input, but in hallucinating patients, the same stimulation partly disrupts ongoing activity in this network.