17 resultados para Articulações - Amplitude de movimento
Resumo:
During short-term postural changes, the factors determining the amplitude of intracranial pulse pressure (ICPPA) remain constant, except for cerebrovascular resistance (CVR). Therefore, it may be possible to draw conclusions from the ICPPA onto the cerebrovascular resistance (CVR) and thus the relative change in cerebral perfusion pressure (CPP).
Resumo:
To investigate changes in ocular pulse amplitude (OPA) during a short-term increase in intraocular pressure (IOP) and to assess possible influences of biometrical properties of the eye, including central corneal thickness (CCT) and axial length.
Resumo:
The N-H center dot center dot center dot pi hydrogen bond is an important intermolecular interaction in many biological systems. We have investigated the infrared (IR) and ultraviolet (UV) spectra of the supersonic-jet cooled complex of pyrrole with benzene and benzene-d(6) (Pyr center dot Bz, Pyr center dot Bz-d(6)). DFT-D density functional, SCS-MP2 and SCS-CC2 calculations predict a T-shaped and (almost) C(s) symmetric structure with an N-H center dot center dot center dot pi hydrogen bond to the benzene ring. The pyrrole is tipped by omega(S(0)) = +/- 13 degrees relative to the surface normal of Bz. The N center dot center dot center dot ring distance is 3.13 angstrom. In the S(1) excited state, SCS-CC2 calculations predict an increased tipping angle omega(S(1)) = +/- 21 degrees. The IR depletion spectra support the T-shaped geometry: The NH stretch is redshifted by -59 cm(-1), relative to the "free" NH stretch of pyrrole at 3531 cm(-1), indicating a moderately strong N-H center dot center dot center dot pi interaction. The interaction is weaker than in the (Pyr)(2) dimer, where the NH donor shift is -87 cm(-1) [Dauster et al., Phys. Chem. Chem. Phys., 2008, 10, 2827]. The IR C-H stretch frequencies and intensities of the Bz subunit are very similar to those of the acceptor in the (Bz)(2) dimer, confirming that Bz acts as the acceptor. While the S(1) <- S(0) electronic origin of Bz is forbidden and is not observable in the gas-phase, the UV spectrum of Pyr center dot Bz in the same region exhibits a weak 0(0)(0) band that is red-shifted by 58 cm(-1) relative to that of Bz (38 086 cm(-1)). The origin appears due to symmetry-breaking of the p-electron system of Bz by the asymmetric pyrrole NH center dot center dot center dot pi hydrogen bond. This contrasts with (Bz)(2), which does not exhibit a 0(0)(0) band. The Bz moiety in Pyr center dot Bz exhibits a 6a(0)(1) band at 0(0)(0) + 518 cm(-1) that is about 20x more intense than the origin band. The symmetry breaking by the NH center dot center dot center dot pi hydrogen bond splits the degeneracy of the v(6)(e(2g)) vibration, giving rise to 6a' and 6b' sub-bands that are spaced by similar to 6 cm(-1). Both the 0(0)(0) and 6(0)(1) bands of Pyr center dot Bz carry a progression in the low-frequency (10 cm(-1)) excited-state tipping vibration omega', in agreement with the change of the omega tipping angle predicted by SCS-MP2 and SCS-CC2 calculations.
Resumo:
Background It has been demonstrated that frequency modulation of loading influences cellular response and metabolism in 3D tissues such as cartilage, bone and intervertebral disc. However, the mechano-sensitivity of cells in linear tissues such as tendons or ligaments might be more sensitive to changes in strain amplitude than frequency. Here, we hypothesized that tenocytes in situ are mechano-responsive to random amplitude modulation of strain. Methods We compared stochastic amplitude-modulated versus sinusoidal cyclic stretching. Rabbit tendon were kept in tissue-culture medium for twelve days and were loaded for 1h/day for six of the total twelve culture days. The tendons were randomly subjected to one of three different loading regimes: i) stochastic (2 – 7% random strain amplitudes), ii) cyclic_RMS (2–4.42% strain) and iii) cyclic_high (2 - 7% strain), all at 1 Hz and for 3,600 cycles, and one unloaded control. Results At the end of the culture period, the stiffness of the “stochastic” group was significantly lower than that of the cyclic_RMS and cyclic_high groups (both, p < 0.0001). Gene expression of eleven anabolic, catabolic and inflammatory genes revealed no significant differences between the loading groups. Conclusions We conclude that, despite an equivalent metabolic response, stochastically stretched tendons suffer most likely from increased mechanical microdamage, relative to cyclically loaded ones, which is relevant for tendon regeneration therapies in clinical practice.
Resumo:
Distal oesophageal spasm is a rare and under-investigated motility abnormality. Recent studies indicate effective bolus transit in varying percentages of distal oesophageal spasm patients.
Resumo:
OBJECTIVES: To test whether dynamic contour tonometry yields ocular pulse amplitude (OPA) measurements that are independent of corneal thickness and curvature, and to assess variables of observer agreement. METHODS: In a multivariate cluster analysis on 223 eyes, the relationship between central corneal thickness, corneal curvature, axial length, anterior chamber depth, intraocular pressure, sex, age, and OPA measurements was assessed. Intraobserver and interobserver variabilities were calculated from repeated measurements obtained from 8 volunteers by 4 observers. RESULTS: The OPA readings were not affected by central corneal thickness (P = .08), corneal curvature (P = .47), anterior chamber depth (P = .80), age (P = .60), or sex (P = .73). There was a positive correlation between OPA and intraocular pressure (0.12 mm Hg/1 mm Hg of intraocular pressure; P<.001) and a negative correlation between OPA and axial length (0.27 mm Hg/1 mm of length; P<.001). Intraobserver and interobserver variabilities were 0.08 and 0.02 mm Hg, respectively, and the intraclass correlation coefficient was 0.89. CONCLUSIONS: The OPA readings obtained with dynamic contour tonometry in healthy subjects are not influenced by the structure of the anterior segment of the eye but are affected by intraocular pressure and axial length. We found a high amount of agreement within and between observers.