53 resultados para Andes Centrales
Resumo:
Book review of: Kendall, Ann Rodríguez, Abelardo. Desarrollo y Perspectivas de los Sistemas de Andenerías en los Andes Centrales del Perú (Development and Perspectives of Irrigated Terrace Systems in the Peruvian Central Andes). Cuzco, Peru. ISBN: 978-9972-691-93-5.
Resumo:
The response of the tropics to North Atlantic cold events, such as Heinrich Event I (H-I, ∼ 17–15 ka) and the Younger Dryas (YD, 12.7–11.5 ka), is still one of the most tantalizing, yet unresolved issues in paleoclimatology. The advent of surface exposure dating has therefore instigated the establishment of glacial chronologies in the tropical Andes to investigate potential climate teleconnections. Here, we present new exposure ages from the Cordillera Cochabamba (17°17′S), Bolivia, that reveal glacial advances during H-I and YD, as well as during the Early Holocene. Our chronology correlates well with cold sea surface temperatures in the eastern tropical Pacific, which indicates that La Niña-like conditions, i.e. forcings intrinsic to the tropics, played a key role for moisture advection and glaciation in the tropical Andes.
Resumo:
The latitudinal position of the southern westerlies has been suggested to be a key parameter for the climate on Earth. According to the general notion, the southern westerlies were shifted equatorward during the global Last Glacial Maximum (LGM: ~24–18 ka), resulting in reduced deep ocean ventilation, accumulation of old dissolved carbon, and low atmospheric CO2 concentrations. In order to test this notion, we applied surface exposure dating on moraines in the southern Central Andes, where glacial mass balances are particularly sensitive to changes in precipitation, i.e. to the latitudinal position of the westerlies. Our results provide robust evidence that the maximum glaciation occurred already at ~39 ka, significantly predating the global LGM. This questions the role of the westerlies for atmospheric CO2, and it highlights our limited understanding of the forcings of atmospheric circulation.