60 resultados para Alternative fluids. Steam injection. Simulation. IOR. Modeling of reservoirs
Resumo:
P450 oxidoreductase (POR) is the obligate electron donor for microsomal cytochrome P450s and mutations in POR cause several metabolic disorders. We have modeled the structure of human P450 oxidoreductase by in silico amino acid replacements in the rat POR crystal structure. The rat POR has 94% homology with human POR and 38 amino acids were replaced to make its sequence identical to human POR. Several rounds of molecular dynamic simulations refined the model and removed structural clashes from side chain alterations of replaced amino acids. This approach has the advantage of keeping the cofactor contacts and structural features of the core enzyme intact which could not be achieved by homology based approaches. The final model from our approach was of high quality and compared well with experimentally determined structures of other PORs. This model will be used for analyzing the structural implications of mutations and polymorphisms in human POR.
Resumo:
The goals of the present study were to model the population kinetics of in vivo influx and efflux processes of grepafloxacin at the serum-cerebrospinal fluid (CSF) barrier and to propose a simulation-based approach to optimize the design of dose-finding trials in the meningitis rabbit model. Twenty-nine rabbits with pneumococcal meningitis receiving grepafloxacin at 15 mg/kg of body weight (intravenous administration at 0 h), 30 mg/kg (at 0 h), or 50 mg/kg twice (at 0 and 4 h) were studied. A three-compartment population pharmacokinetic model was fit to the data with the program NONMEM (Nonlinear Mixed Effects Modeling). Passive diffusion clearance (CL(diff)) and active efflux clearance (CL(active)) are transfer kinetic modeling parameters. Influx clearance is assumed to be equal to CL(diff), and efflux clearance is the sum of CL(diff), CL(active), and bulk flow clearance (CL(bulk)). The average influx clearance for the population was 0.0055 ml/min (interindividual variability, 17%). Passive diffusion clearance was greater in rabbits receiving grepafloxacin at 15 mg/kg than in those treated with higher doses (0.0088 versus 0.0034 ml/min). Assuming a CL(bulk) of 0.01 ml/min, CL(active) was estimated to be 0.017 ml/min (11%), and clearance by total efflux was estimated to be 0.032 ml/min. The population kinetic model allows not only to quantify in vivo efflux and influx mechanisms at the serum-CSF barrier but also to analyze the effects of different dose regimens on transfer kinetic parameters in the rabbit meningitis model. The modeling-based approach also provides a tool for the simulation and prediction of various outcomes in which researchers might be interested, which is of great potential in designing dose-finding trials.
Resumo:
In this second part of our comparative study inspecting the (dis)similarities between “Stokes” and “Jones,” we present simulation results yielded by two independent Monte Carlo programs: (i) one developed in Bern with the Jones formalism and (ii) the other implemented in Ulm with the Stokes notation. The simulated polarimetric experiments involve suspensions of polystyrene spheres with varying size. Reflection and refraction at the sample/air interfaces are also considered. Both programs yield identical results when propagating pure polarization states, yet, with unpolarized illumination, second order statistical differences appear, thereby highlighting the pre-averaged nature of the Stokes parameters. This study serves as a validation for both programs and clarifies the misleading belief according to which “Jones cannot treat depolarizing effects.”
Resumo:
Statistical shape models (SSMs) have been used widely as a basis for segmenting and interpreting complex anatomical structures. The robustness of these models are sensitive to the registration procedures, i.e., establishment of a dense correspondence across a training data set. In this work, two SSMs based on the same training data set of scoliotic vertebrae, and registration procedures were compared. The first model was constructed based on the original binary masks without applying any image pre- and post-processing, and the second was obtained by means of a feature preserving smoothing method applied to the original training data set, followed by a standard rasterization algorithm. The accuracies of the correspondences were assessed quantitatively by means of the maximum of the mean minimum distance (MMMD) and Hausdorf distance (H(D)). Anatomical validity of the models were quantified by means of three different criteria, i.e., compactness, specificity, and model generalization ability. The objective of this study was to compare quasi-identical models based on standard metrics. Preliminary results suggest that the MMMD distance and eigenvalues are not sensitive metrics for evaluating the performance and robustness of SSMs.
Resumo:
In this study, the effect of time derivatives of flow rate and rotational speed was investigated on the mathematical modeling of a rotary blood pump (RBP). The basic model estimates the pressure head of the pump as a dependent variable using measured flow and speed as predictive variables. Performance of the model was evaluated by adding time derivative terms for flow and speed. First, to create a realistic working condition, the Levitronix CentriMag RBP was implanted in a sheep. All parameters from the model were physically measured and digitally acquired over a wide range of conditions, including pulsatile speed. Second, a statistical analysis of the different variables (flow, speed, and their time derivatives) based on multiple regression analysis was performed to determine the significant variables for pressure head estimation. Finally, different mathematical models were used to show the effect of time derivative terms on the performance of the models. In order to evaluate how well the estimated pressure head using different models fits the measured pressure head, root mean square error and correlation coefficient were used. The results indicate that inclusion of time derivatives of flow and speed can improve model accuracy, but only minimally.
Resumo:
Due to the existence of a velocity slip and temperature jump on the solid walls, the heat transfer in microchannels significantly differs from the one in the macroscale. In our research, we have focused on the pressure driven gas flows in a simple finite microchannel geometry, with an entrance and an outlet, for low Reynolds (Re<200) and low Knudsen (Kn<0.01) numbers. For such a regime, the slip induced phenomena are strongly connected with the viscous effects. As a result, heat transfer is also significantly altered. For the optimization of flow conditions, we have investigated various temperature gradient configurations, additionally changing Reynolds and Knudsen numbers. The entrance effects, slip flow, and temperature jump lead to complex relations between flow behavior and heat transfer. We have shown that slip effects are generally insignificant for flow behavior. However, two configuration setups (hot wall cold gas and cold wall hot gas) are affected by slip in distinguishably different ways. For the first one, which concerns turbomachinery, the mass flow rate can increase by about 1% in relation to the no-slip case, depending on the wall-gas temperature difference. Heat transfer is more significantly altered. The Nusselt number between slip and no-slip cases at the outlet of the microchannel is increased by about 10%.
Resumo:
Ocular anatomy and radiation-associated toxicities provide unique challenges for external beam radiation therapy. For treatment planning, precise modeling of organs at risk and tumor volume are crucial. Development of a precise eye model and automatic adaptation of this model to patients' anatomy remain problematic because of organ shape variability. This work introduces the application of a 3-dimensional (3D) statistical shape model as a novel method for precise eye modeling for external beam radiation therapy of intraocular tumors.