20 resultados para Alnus crispa


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to infer reactions of treeline and alpine vegetation to climatic change, past vegetation changes are reconstructed on the basis of pollen, macrofossil and charcoal analysis. The sampled sediment cores originate from the small pond Emines, located at the Sanetsch Pass (connecting the Valais and Bern, Switzerland) at an altitude of 2288 m a.s.l. Today's treeline is at ca. 2200 m a.s.l. in the area, though due to special pass (saddle) conditions it is locally depressed to ca. 2060 m a.s.l. Our results reveal that the area around Emines was covered by treeless alpine vegetation during most of the past 12,000 years. Single individuals of Betula, Larix decidua and possibly Pinus cembra occurred during the Holocene. Major centennial to millennial-scale responses of treeline vegetation to climatic changes are evident. However, alpine vegetation composition remained rather stable between 11,500 and 6000 cal. BP, showing that Holocene climatic changes of +/− 1 °C hardly influenced the local vegetation at Emines. The rapid warming of 3–4 °C at the Late Glacial/Holocene transition (11,600 cal. BP) caused significant altitudinal displacements of alpine species that were additionally affected by the rapid upward movement of trees and shrubs. Since the beginning of the Neolithic, vegetation changes at Sanetsch Pass resulted from a combination of climate change and human impact. Anthropogenic fire increase and land-use change combined with a natural change from subcontinental to more oceanic climate during the second half of the Holocene led to the disappearance of P. cembra in the study area, but favoured the occurrence of Picea abies and Alnus viridis. The mid- to late-Holocene decline of Abies alba was primarily a consequence of human impact, since this mesic species should have benefitted from a shift to more oceanic conditions. Future alpine vegetation changes will be a function of the amplitude and rapidity of global warming as well as human land use. Our results imply that alpine vegetation at our treeline pass site was never replaced by forests since the last ice-age. This may change in the future if anticipated climate change will induce upslope migration of trees. The results of this study emphasise the necessity of climate change mitigation in order to prevent biodiversity losses as a consequence of unprecedented community and species displacement in response to climatic change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent observations and model simulations have highlighted the sensitivity of the forest - tundra ecotone to climatic forcing. In contrast, paleoecological studies have not provided evidence of tree-line fluctuations in response to Holocene climatic changes in Alaska, suggesting that the forest - tundra boundary in certain areas may be relatively stable at multicentennial to millennial time scales. We conducted a multiproxy study of sediment cores from an Alaskan lake near the altitudinal limits of key boreal-forest species. Paleoecological data were compared with independent climatic reconstructions to assess ecosystem responses of the forest - tundra boundary to Little Ice Age (LIA) climatic. uctuations. Pollen, diatom, charcoal, macrofossil, and magnetic analyses provide the first continuous record of vegetation -. re - climate interactions at decadal to centennial time scales during the past 700 years from southern Alaska. Boreal-forest diebacks characterized by declines of Picea mariana, P. glauca, and tree Betula occurred during the LIA ( AD 1500 - 1800), whereas shrubs ( Alnus viridis, Betula glandulosa/nana) and herbaceous taxa (Epilobium, Aconitum) expanded. Marked increases in charcoal abundance and changes in magnetic properties suggest increases in. re importance and soil erosion during the same period. In addition, the conspicuous reduction or disappearance of certain aquatic ( e. g., Isoetes, Nuphar, Pediastrum) and wetland ( Sphagnum) plants and major shifts in diatom assemblages suggest pronounced lake-level. uctuations and rapid ecosystem reorganization in response to LIA climatic deterioration. Our results imply that temperature shifts of 1 - 2 degrees C, when accompanied by major changes in moisture balance, can greatly alter high-altitudinal terrestrial, wetland, and aquatic ecosystems, including conversion between boreal-forest tree line and tundra. The climatic and ecosystem variations in our study area appear to be coherent with changes in solar irradiance, suggesting that changes in solar activity contributed to the environmental instability of the past 700 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lake sediments from Lauenensee (1381 m a.s.l.), a small lake in the Bernese Alps, were analysed to reconstruct the vegetation and fire history. The chronology is based on 11 calibrated radiocarbon dates on terrestrial plant macrofossils suggesting a basal age of 14,200 cal. BP. Pollen and macrofossil data imply that treeline never reached the lake catchment during the Bølling–Allerød interstadial. Treeline north of the Alps was depressed by c. 300 altitudinal meters, if compared with southern locations. We attribute this difference to colder temperatures and to unbuffered cold air excursions from the ice masses in northern Europe. Afforestation started after the Younger Dryas at 11,600 cal. BP. Early-Holocene tree-Betula and Pinus sylvestris forests were replaced by Abies alba forests around 7500 cal. BP. Continuous high-resolution pollen and macrofossil series allow quantitative assessments of vegetation dynamics at 5900–5200 cal. BP (first expansion of Picea abies, decline of Abies alba) and 4100–2900 cal. BP (first collapse of Abies alba). The first signs of human activity became noticeable during the late Neolithic c. 5700–5200 cal. BP. Cross-correlation analysis shows that the expansion of Alnus viridis and the replacement of Abies alba by Picea abies after c. 5500 cal. BP was most likely a consequence of human disturbance. Abies alba responded very sensitively to a combination of fire and grazing disturbance. Our results imply that the current dominance of Picea abies in the upper montane and subalpine belts is a consequence of anthropogenic activities through the millennia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Treelines are expected to rise to higher elevations with climate warming; the rate and extent however are still largely unknown. Here we present the first multi-proxy palaeoecological study from the treeline in the Northwestern Swiss Alps that covers the entire Holocene. We reconstructed climate, fire and vegetation dynamics at Iffigsee, an alpine lake at 2,065 m a.s.l., by using seismic sedimentary surveys, loss on ignition, visible spectrum reflectance spectroscopy, pollen, spore, macrofossil and charcoal analyses. Afforestation with Larix decidua and tree Betula (probably B. pendula) started at ~9,800 cal. b.p., more than 1,000 years later than at similar elevations in the Central and Southern Alps, indicating cooler temperatures and/or a high seasonality. Highest biomass production and forest position of ~2,100–2,300 m a.s.l. are inferred during the Holocene Thermal Maximum from 7,000 to 5,000 cal. b.p. With the onset of pastoralism and transhumance at 6,800–6,500 cal. b.p., human impact became an important factor in the vegetation dynamics at Iffigsee. This early evidence of pastoralism is documented by the presence of grazing indicators (pollen, spores), as well as a wealth of archaeological finds at the nearby mountain pass of Schnidejoch. Human and fire impact during the Neolithic and Bronze Ages led to the establishment of pastures and facilitated the expansion of Picea abies and Alnus viridis. We expect that in mountain areas with land abandonment, the treeline will react quickly to future climate warming by shifting to higher elevations, causing drastic changes in species distribution and composition as well as severe biodiversity losses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changes in fire occurrence during the last decades in the southern Swiss Alps make knowledge on fire history essential to understand future evolution of the ecosystem composition and functioning. In this context, palaeoecology provides useful insights into processes operating at decadal-to-millennial time scales, such as the response of plant communities to intensified fire disturbances during periods of cultural change. We provide a high-resolution macroscopic charcoal and pollen series from Guèr, a well-dated peat sequence at mid-elevation (832 m.a.s.l.) in southern Switzerland, where the presence of local settlements is documented since the late Bronze Age and the Iron Age. Quantitative fire reconstruction shows that fire activity sharply increased from the Neolithic period (1–3 episodes/1000 year) to the late Bronze and Iron Age (7–9 episodes/1000 year), leading to extensive clearance of the former mixed deciduous forest (Alnus glutinosa, Betula, deciduous Quercus). The increase in anthropogenic pollen indicators (e.g. Cerealia-type, Plantago lanceolata) together with macroscopic charcoal suggests anthropogenic rather than climatic forcing as the main cause of the observed vegetation shift. Fire and controlled burning were extensively used during the late Roman Times and early Middle Ages to promote the introduction and establishment of chestnut (Castanea sativa) stands, which provided an important wood and food supply. Fire occurrence declined markedly (from 9 to 5–6 episodes/1000 year) during late Middle Ages because of fire suppression, biomass removal by human population, and landscape fragmentation. Land-abandonment during the last decades allowed forest to partly re-expand (mainly Alnus glutinosa, Betula) and fire frequency to increase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The late-Holocene shift from Picea glauca (white spruce) to Picea mariana (black spruce) forests marked the establishment of modern boreal forests in Alaska. To understand the patterns and drivers of this vegetational change and the associated late-Holocene environmental dynamics, we analyzed radiocarbon-dated sediments from Grizzly Lake for chironomids, diatoms, pollen, macrofossils, charcoal, element composition, particle size, and magnetic properties for the period 4100–1800 cal BP. Chironomid assemblages reveal two episodes of decreased July temperature, at ca. 3300–3150 (ca −1 °C) and 2900–2550 cal BP (ca −2 °C). These episodes coincided with climate change elsewhere in the Northern Hemisphere, atmospheric reorganization, and low solar activity. Diatom-inferred lake levels dropped by ca. 5 m at 3200 cal BP, suggesting dry conditions during the period 3200–1800 cal BP. P. glauca declined and P. mariana expanded at ca. 3200 cal BP; this vegetational change was linked to diatom-inferred low lake levels and thus decreased moisture availability. Forest cover declined at 3300–3100, 2800–2500 and 2300–2100 cal BP and soil erosion as inferred from increased values of Al, K, Si, Ti, and Ca intensified, when solar irradiance was low. Plant taxa adapted to disturbance and cold climate (e.g. Alnus viridis, shrub Betula, Epilobium) expanded during these periods of reduced forest cover. This open vegetation type was associated with high fire activity that peaked at 2800 cal BP, when climatic conditions were particularly cold and dry. Forest recovery lagged behind subsequent climate warming (≤+3 °C) by ca. 75–225 years. Our multiproxy data set suggests that P. glauca was dominant under warm-moist climatic conditions, whereas P. mariana prevailed under cold-dry and warm-dry conditions. This pattern implies that climatic warming, as anticipated for this century, may promote P. glauca expansions, if moisture availability will be sufficiently high, while P. mariana may expand under dry conditions, possibly exacerbating climate impacts on the fire regime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pollen and plant macrofossils were analysed at Sägistalsee (1935 m asl), a small lake near timber-line in the Swiss Northern Alps. Open forests with Pinus cembra and Abies alba covered the catchment during the early Holocene (9000–6300 cal. BP), suggesting subcontinental climate conditions. After the expansion of Picea abies between 6300 and 6000 cal. BP the subalpine forest became denser and the tree-line reached its maximum elevation at around 2260 m asl. Charcoal fragments in the macrofossil record indicate the beginning of Late-Neolithic human impact at ca. 4400 cal. BP, followed by a extensive deforestation and lowering of the forest-limit in the catchment of Sägistalsee at 3700 cal. BP (Bronze Age). Continuous human activity, combined with a more oceanic climate during the later Holocene, led to the local extinction of Pinus cembra and Abies alba and favoured the mass expansion of Picea and Alnus viridis in the subalpine area of the Northern Alps. The periods before 6300 and after 3700 cal. BP are characterised by high erosion activity in the lake's catchment, whereas during the phase of dense Picea-Pinus cembra-Abies forests (6300–3700 cal. BP) soils were stable and sediment-accumulation rates in the lake were low. Due to decreasing land-use at higher altitudes during the Roman occupation and the Migration period, forests spread beween ca. 2000 and 1500 cal. BP, before human impact increased again in the early Middle Ages. Recent reforestation due to land-use changes in the 20th century is recorded in the top sediments. Pollen-inferred July temperature and annual precipitation suggest a trend to cooler and more oceanic climate starting at about 5500 cal. BP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

o reconstruct the vegetation and fire history of the Upper Engadine, two continuous sediment cores from Lej da Champfèr and Lej da San Murezzan (Upper Engadine Valley, southeastern Switzerland) were analysed for pollen, plant macrofossils, charcoal and kerogen. The chronologies of the cores are based on 38 radiocarbon dates. Pollen and macrofossil data suggest a rapid afforestation with Betula, Pinus sylvestris, Pinus cembra, and Larix decidua after the retreat of the glaciers from the lake catchments 11,000 cal years ago. This vegetation type persisted until ca. 7300 cal b.p. (5350 b.c.) when Picea replaced Pinus cembra. Pollen indicative of human impact suggests that in this high-mountain region of the central Alps strong anthropogenic activities began during the Early Bronze Age (3900 cal b.p., 1950 b.c.). Local human settlements led to vegetational changes, promoting the expansion of Larix decidua and Alnus viridis. In the case of Larix, continuing land use and especially grazing after fire led to the formation of Larix meadows. The expansion of Alnus viridis was directly induced by fire, as evidenced by time-series analysis. Subsequently, the process of forest conversion into open landscapes continued for millennia and reached its maximum at the end of the Middle Ages at around 500 cal b.p. (a.d. 1450).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to find out which factors influenced the forest dynamics in northern Italy during the Holocene, a palaeoecological approach involving pollen analysis was combined with ecosystem modelling. The dynamic and distribution based forest model DisCForm was run with different input scenarios for climate, species immigration, fire, and human impact and the similarity of the simulations with the original pollen record was assessed. From the comparisons of the model output and the pollen core, it appears that immigration was most important in the first part of the Holocene, and that fire and human activity had a major influence in the second half. Species not well represented in the simulation outputs are species with a higher abundance in the past than today (Corylus), with their habitat in riparian forests (Alnus) or with a strong response to human impact (Castanea).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aufgrund der Untersuchung von Pollen, pflanzlichen Makrofossilien und organischen Sedimentpartikeln (z. B. Holzkohle) in zwei Oberengadiner Seen wird die Vegetationsentwicklung der letzten 6200 Jahre rekonstruiert und im Licht der Entwicklung menschlicher Einflussnahme betrachtet. Der zeitliche Ablauf der Vegetationsveränderungen beruht auf 38 C-14-Datierungen terrestrischer Makroreste aus zwei Sedimentkernen. Die paläobotanischen Daten aus dem St. Moritzer See (Lej da San Murezzan) zeigen für die Zeit von 4200 bis ca. 3550 v. Chr. eine natürliche Waldvegetation bestehend aus Fichte (Picea), Wald- resp. Bergföhre (Pinus sylvestris/P. mugo), Arve (Pinus cembra) und Lärche (Larix decidua). Palynologische Kulturzeiger belegen erste Spuren neolithischer Veränderungen dieser Vegetation in der Zeit um ca. 3500 v. Chr. Eine tiefgreifende Vegetationsveränderung ist für die frühe Bronzezeit, um 2000 v.Chr. zu belegen. Die menschliche Besiedlung führte zu einer ausgeprägten Auflockerung des Waldes mit massiver Zunahme der Weide- und Kulturzeiger (z. B. Getreide, Rumex acetosella, Plantago lanceolata, Urtica, Cichorioideae) sowie einer starken Ausbreitung der Grünerle (Alnus viridis) und der Lärche (Larix decidua). Die Vegetationsentwicklung und die Verteilung von Holzkohlepartikeln in den Sedimenten weisen auf Waldbrände hin. Das Zurückdrängen des Waldes erfolgte in verschiedenen Phasen, die sich mit Besiedlungs- oder Kulturphasen erklären lassen. Der stärkste Rückgang des Waldes fällt ins Mittelalter (ab ca. 800 n. Chr.). In den letzten 200 Jahren nimmt die Baumvegetation vermutlich als Folge eines Nutzungsrückgangs wieder zu. Die ausgeprägtesten Veränderungen der Vegetation fallen mit Epochengrenzen zusammen, was sich mit technologischen Erneuerungen oder möglicherweise mit Einwanderungsphasen erklären lässt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Annual pollen influx has been monitored in short transects across the altitudinal tree limit in four areas of the Swiss Alps with the use of modified Tauber traps placed at the ground surface. The study areas are Grindelwald (8 traps), Aletsch (8 traps), Simplon (5 traps), and Zermatt (5 traps). The vegetation around the traps is described. The results obtained are: (1) Peak years of pollen influx (one or two in seven years) follow years of high average air temperatures during June–November of the previous year for Larix and Picea, and less clearly for Pinus non-cembra, but not at all for Pinus cembra and Alnus viridis. (2) At the upper forest limit, the regional pollen influx of trees (trees absent within 100 m of the pollen trap) relates well to the average basal area of the same taxon within 10–15 km of the study areas for Pinus cembra, Larix, and Betula, but not for Picea, Pinus non-cembra, and Alnus viridis. (3) The example of Zermatt shows that pollen influx characterises the upper forest limit, if the latter is more or less intact. (4) Presence/absence of Picea, Pinus cembra, Larix, Pinus non-cembra, and Alnus viridis trees within 50–100 m of the traps is apparent in the pollen influx in peak years of pollen influx but not in other years, suggesting that forest-limit trees produce significant amounts of pollen only in some years. (5) Pollen influx averaged over the study period correlates well with the abundance of plants around the pollen traps for conifer trees (but not deciduous trees), Calluna, Gramineae, and Cyperaceae, and less clearly so Compositae Subfam. Cichorioideae and Potentilla-type. (6) Influx of extra-regional pollen derived from south of the Alps is highest in Simplon, which is open to southerly winds, slightly lower in Aletsch lying just north of Simplon, and lowest in Zermatt sheltered from the south by high mountains and Grindelwald lying north of the central Alps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A total of 23 pollen diagrams [stored in the Alpine Palynological Data-Base (ALPADABA), Geobotanical Institute, Bern] cover the last 100 to over 1000 years. The sites include 15 lakes, seven mires, and one soil profile distributed in the Jura Mts (three sites), Swiss Plateau (two sites), northern Pre-Alps and Alps (six sites), central Alps (five sites), southern Alps (three sites), and southern Pre-Alps (four sites) in the western and southern part of Switzerland or just outside the national borders. The pollen diagrams have both a high taxonomic resolution and a high temporal resolution, with sampling distances of 0.5–3 cm, equivalent to 1 to 11 years for the last 100 years and 8 to 130 years for earlier periods. The chronology is based on absolute dating (14 sites: 210Pb 11 sites; 14C six sites; varve counting two sites) or on biostratigraphic correlation among pollen diagrams. The latter relies mainly on trends in Cannabis sativa, Ambrosia, Mercurialis annua, and Ostrya-type pollen. Individual pollen stratigraphies are discussed and sites are compared within each region. The principle of designating local, extra-local, and regional pollen signals and vegetation is exemplified by two pairs of sites lying close together. Trends in biostratigraphies shared by a major part of the pollen diagrams allow the following generalisations. Forest declined in phases since medieval times up to the late 19th century. Abies and Fagus declined consistently, whereas the behaviour of short-lived trees and trees of moist habitats differed among sites (Alnus glutinosa-type, Alnus viridis, Betula, Corylus avellana). In the present century, however, Picea and Pinus increased, followed by Fraxinus excelsior in the second half of this century. Grassland (traced by Gramineae and Plantago lanceolata-type pollen) increased, replacing much of the forest, and declined again in the second half of this century. Nitrate enrichment of the vegetation (traced by Urtica) took place in the first half of this century. These trends reflect the intensification of forest use and the expansion of grassland from medieval times up to the end of the last century, whereas subsequently parts of the grassland became used more intensively and the marginal parts were abandoned for forest regrowth. In most pollen diagrams human impact is the dominant factor in explaining inferred changes in vegetation, but climatic change plays a role at three sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1 Pollen and charcoal analysis at two lakes in southern Switzerland revealed that fire has had a prominent role in changing the woodland composition of this area for more than 7000 years. 2 The sediment of Lago di Origlio for the period between 5100 and 3100 bc cal. was sampled continuously with a time interval of about 10 years. Peaks of charcoal particles were significantly correlated with repeated declines in pollen of Abies, Hedera, Tilia, Ulmus, Fraxinus excelsior t., Fagus and Vitis and with increases in Alnus glutinosa t., shrubs (e.g. Corylus, Salix and Sambucus nigra t.) and several herbaceous species. The final disappearance of the lowland Abies alba stands at around 3150 bc cal. may be an example of a fire-caused local extinction of a fire-intolerant species. 3 Forest fires tended to diminish pollen diversity. The charcoal peaks were preceded by pollen types indicating human activity. Charcoal minima occurred during periods of cold humid climate, when fire susceptibility would be reduced. 4 An increase of forest fires at about 2100 bc cal. severely reduced the remaining fire-sensitive plants: the mixed-oak forest was replaced by a fire-tolerant alder–oak forest. The very strong increase of charcoal influx, and the marked presence of anthropogenic indicators, point to principally anthropogenic causes. 5 We suggest that without anthropogenic disturbances Abies alba would still form lowland forests together with various deciduous broadleaved tree taxa.