44 resultados para Agricultural colleges.
Resumo:
While bryophytes greatly contribute to plant diversity of semi-natural grasslands, little is known about the relationships between land-use intensity, productivity, and bryophyte diversity in these habitats. We recorded vascular plant and bryophyte vegetation in 85 agricultural used grasslands in two regions in northern and central Germany and gathered information on land-use intensity. To assess grassland productivity, we harvested aboveground vascular plant biomass and analyzed nutrient concentrations of N, P, K, Ca and Mg. Further we calculated mean Ellenberg indicator values of vascular plant vegetation. We tested for effects of land-use intensity and productivity on total bryophyte species richness and on the species richness of acrocarpous (small & erect) and pleurocarpous (creeping, including liverworts) growth forms separately. Bryophyte species were found in almost all studied grasslands, but species richness differed considerably between study regions in northern Germany (2.8 species per 16 m2) and central Germany (6.4 species per 16 m2) due environmental differences as well as land-use history. Increased fertilizer application, coinciding with high mowing frequency, reduced bryophyte species richness significantly. Accordingly, productivity estimates such as plant biomass and nitrogen concentration were strongly negatively related to bryophyte species richness, although productivity decreased only pleurocarpous species. Ellenberg indicator values for nutrients proved to be useful indicators of species richness and productivity. In conclusion, bryophyte composition was strongly dependent on productivity, with smaller bryophytes that were likely negatively affected by greater competition for light. Intensive land-use, however, can also indirectly decrease bryophyte species richness by promoting grassland productivity. Thus, increasing productivity is likely to cause a loss of bryophyte species and a decrease in species diversity.
Resumo:
Alpine grasslands are ecosystems with a great diversity of plant species. However, little is known about other levels of biodiversity, such as landscape diversity, diversity of biological interactions of plants with herbivores or fungal pathogens, and genetic diversity. We therefore explored natural and anthropogenic determinants of grassland biodiversity at several levels of biological integration, from the genetic to the landscape level in the Swiss Alps. Differences between cultural traditions (Romanic, Germanic, and Walser) turned out to still affect land use diversity and thus landscape diversity. Increasing land use diversity, in turn, increased plant species diversity per village. However, recent land use changes have reduced this diversity. Within grassland parcels, plant species diversity was higher on unfertilized mown grasslands than on fertilized or grazed ones. Most individual plants were affected by herbivores and fungal leaf pathogens, reflecting that parcels harbored a great diversity of herbivores and pathogens. However, as plant damage by herbivores and pathogens was not severe, conserving these biological interactions among plants is hardly compromising agricultural goals. A common-garden experiment revealed genetic differentiation of the important fodder grass Poa alpina between mown and grazed sites, suggesting adaptation. Per-village genetic diversity of Poa alpina was greater in villages with higher land use diversity, analogous to the higher plant species diversity there. Overall, landscape diversity and biodiversity within grassland parcels are currently declining. As this contradicts the intention of Swiss law and international agreements, financial incentives need to be re-allocated and should focus on promoting high biodiversity at the local and the landscape level. At the same time, this will benefit landscape attractiveness for tourists and help preserve a precious cultural heritage in the Swiss Alps.