21 resultados para 1064 nm


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrated all-fiber amplification of 11 ps pulses from a gain-switched laser diode at 1064 nm. The diode was driven at a repetition rate of 40 MHz and delivered 13 µW of fiber-coupled average output power. For the low output pulse energy of 325 fJ we have designed a multi-stage core pumped pre-amplifier in order to keep the contribution of undesired amplified spontaneous emission as low as possible. By using a novel time-domain approach for determining the power spectral density ratio (PSD) of signal to noise, we identified the optimal working point for our pre-amplifier. After the pre-amplifier we reduced the 40 MHz repetition rate to 1 MHz using a fiber coupled pulse-picker. The final amplification was done with a cladding pumped Yb-doped large mode area fiber and a subsequent Yb-doped rod-type fiber. With our setup we reached a total gain of 73 dB, resulting in pulse energies of >5.6 µJ and peak powers of >0.5 MW. The average PSD-ratio of signal to noise we determined to be 18/1 at the output of the final amplification stage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Custom modes at a wavelength of 1064 nm were generated with a deformable mirror. The required surface deformations of the adaptive mirror were calculated with the Collins integral written in a matrix formalism. The appropriate size and shape of the actuators as well as the needed stroke were determined to ensure that the surface of the controllable mirror matches the phase front of the custom modes. A semipassive bimorph adaptive mirror with five concentric ring-shaped actuators and one defocus actuator was manufactured and characterised. The surface deformation was modelled with the response functions of the adaptive mirror in terms of an expansion with Zernike polynomials. In the experiments the Nd:YAG laser crystal was quasi-CW pumped to avoid thermally induced distortions of the phase front. The adaptive mirror allows to switch between a super-Gaussian mode, a doughnut mode, a Hermite-Gaussian fundamental beam, multi-mode operation or no oscillation in real time during laser operation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The space-qualified design of a miniaturized laser for pulsed operation at a wavelength of 1064 nm and at repetition rates up to 10 Hz is presented. This laser consists of a pair of diode-laser pumped, actively q-switched Nd:YAG rod oscillators hermetically sealed and encapsulated in an environment of dry synthetic air. The system delivers at least 300 million laser pulses with 50 mJ energy and 5 ns pulse width (FWHM). It will be launched in 2017 aboard European Space Agency’s Mercury Planetary Orbiter as part of the BepiColombo Laser Altimeter, which, after a 6-years cruise, will start recording topographic data from orbital altitudes between 400 and 1500 km above Mercury’s surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Telangiectasias of the lower extremities are very common. There are no blinded, randomized, controlled clinical trials comparing laser modalities with the gold standard sclerotherapy, while the few available studies encompass small patients cohorts. OBJECTIVE This prospective, randomized, open-label trial compares the efficacy of sclerotherapy with polidocanol vs. long-pulsed neodymium-doped yttrium aluminium garnet (Nd:YAG) laser in the treatment of leg telangiectasias. PATIENTS AND METHODS Fifty-six female patients with primary leg telangiectasias and reticular veins (C1A or S Ep AS 1 PN ) were included in the study. One leg was randomly assigned to get treatment with the multiple synchronized long-pulsed Nd:YAG laser, while the other received foam sclerotherapy with polidocanol 0.5%. The patients were treated in two sessions at intervals of 6 weeks. The patients were evaluated by the handling physician after 6 weeks and 6 months. Two investigators assessed blindly at the end of the study the photographs for clearing of the vessels using a six-point scale from 1 (no change) to 6 (100% cleared). Patients reported about pain sensation and outcome satisfaction. RESULTS According to the handling dermatologist, at the last follow-up, there was an improvement of 30-40% with a median of 3 (IQR 2) and a good improvement of 50-70% with a median of 4 (IQR 2) after laser treatment and sclerotherapy respectively. In contrast, according to the blinded investigators, there was a median of 5 (IQR 1) with a very good improvement of >70% after both therapies. Improvement was achieved more quickly by sclerotherapy, although at the last follow-up visit there was no difference in clearance between the two groups as assessed by the blinded experts (P-value 0.84). The degree of patient's satisfaction was very good and similar with both therapeutic approaches. There was a significant difference (P-value 0.003) regarding pain perception between the types of therapy. Laser was felt more painful than sclerotherapy. CONCLUSION Telangiectasias of the lower extremities can be successfully treated with either synchronized long-pulsed Nd:YAG laser or sclerotherapy. The 1064-nm long-pulsed Nd:YAG laser is associated with more pain and is suitable especially in case of needle phobia, allergy to sclerosants and in presence of small veins with telangiectatic matting, while sclerotherapy can also treat the feeder veins.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Laser Assisted Skin Healing (LASH) was first introduced in 2001 by Capon and Mordon to prevent keloids and hypertrophic scars. LASH requires homogenous heating throughout the full thickness of the skin around the wound. However, LASH therapy with 808-nm diode laser is deemed to be only applicable for phototype I-IV due to melanin absorption. This prospective ex-vivo study aims to evaluate the thermal effects of different wavelengths (808, 1064, 1210 and 1320 nm) on human skin phototype II, IV and VI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the first studies by Apfelberg in 1994, laser lipolysis (LAL) has been on the rise. Laser lipolysis leads to reduced operator fatigue, excellent patient tolerance, quick recovery time, as well as the additional benefit of dermal tightening. This article reports a 5-year experience of LAL and underlines the potential evolutions of the technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vitiligo is a relatively common acquired disorder, characterized by progressive loss of melanocytes from the epidermis and the epidermal appendages. The disease is associated with considerable morbidity because of a major impact on the quality of life. The treatment for vitiligo is generally unsatisfactory and challenging. There are a variety of therapeutic possibilities including topical corticosteroids, topical calcineurin inhibitors, as well as phototherapy with Psoralen plus UVA (PUVA), narrow-band UVB, and a 308-nm excimer laser and/or lamps. Furthermore, surgical methods encompass grafting and transplantation while depigmentation treatments and psychological support may also be considered. The objective is to assess the effect of the 380-nm excimer laser in the treatment of vitiligo based on the available studies and case series. We searched the relevant literature about vitiligo and excimer laser published between 1990 and 2012 using the MEDLINE database. We reviewed all relevant articles about 308-nm excimer laser and light sources assessing their efficacy in the management of vitiligo as well as their side effects. The value of combination treatment methods was also analyzed. The available studies provide strong evidence that the excimer laser represents the most effective approach to treat vitiligo compared to ordinary phototherapy. Excimer laser is relatively safe and effective for localized disease. UV-sensitive areas respond best as well as a short duration of the disease. More frequent treatments achieve better results. Compared to other treatment modalities, the excimer laser most likely constitutes the treatment of choice for localized vitiligo. Its efficacy can be further improved in combination with other therapies such as corticosteroids, pimecrolimus, or tacrolimus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several studies have proven the efficacy of pulsed dye laser (PDL) in the treatment of plaque type psoriasis. However, only two published studies indicate the effectiveness of PDL on nail psoriasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue phantoms play a central role in validating biomedical imaging techniques. Here we employ a series of methods that aim to fully determine the optical properties, i.e., the refractive index n, absorption coefficient μa, transport mean free path ℓ∗, and scattering coefficient μs of a TiO2 in gelatin phantom intended for use in optoacoustic imaging. For the determination of the key parameters μa and ℓ∗, we employ a variant of time of flight measurements, where fiber optodes are immersed into the phantom to minimize the influence of boundaries. The robustness of the method was verified with Monte Carlo simulations, where the experimentally obtained values served as input parameters for the simulations. The excellent agreement between simulations and experiments confirmed the reliability of the results. The parameters determined at 780 nm are n=1.359(±0.002), μ′s=1/ℓ∗=0.22(±0.02) mm-1, μa= 0.0053(+0.0006-0.0003) mm-1, and μs=2.86(±0.04) mm-1. The asymmetry parameter g obtained from the parameters ℓ∗ and μ′s is 0.93, which indicates that the scattering entities are not bare TiO2 particles but large sparse clusters. The interaction between the scattering particles and the gelatin matrix should be taken into account when developing such phantoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A transmission electron microscope (TEM) accessory, the energy filter, enables the establishment of a method for elemental microanalysis, the electron energy-loss spectroscopy (EELS). In conventional TEM, unscattered, elastic, and inelastic scattered electrons contribute to image information. Energy-filtering TEM (EFTEM) allows elemental analysis at the ultrastructural level by using selected inelastic scattered electrons. EELS is an excellent method for elemental microanalysis and nanoanalysis with good sensitivity and accuracy. However, it is a complex method whose potential is seldom completely exploited, especially for biological specimens. In addition to spectral analysis, parallel-EELS, we present two different imaging techniques in this chapter, namely electron spectroscopic imaging (ESI) and image-EELS. We aim to introduce these techniques in this chapter with the elemental microanalysis of titanium. Ultrafine, 22-nm titanium dioxide particles are used in an inhalation study in rats to investigate the distribution of nanoparticles in lung tissue.