40 resultados para Independent-particle shell model
em ArchiMeD - Elektronische Publikationen der Universit
Resumo:
In dieser Arbeit wurde der instabile, Neutronenarme Kern 108Sn mit Hilfe der Coulomb-Anregung bei intermediaeren Energien in inverser Kinematik studiert. Diese Methode wurde bisher zur Untersuchung der ersten angeregten 2+ Zustaende und deren E2 Zerfallsraten in Kernen mit Kernladungszahl Z< 30 angewendet. 108Sn ist somit der Kern mit der groeßten Kernladungszahl, bei dem diese Studien bisher stattfanden. Das Ziel dieses Experiments war die Messung der unbekannten reduzierten Uebergangswahrscheinlichkeit B(E2,0+ -> 2+). Der B(E2)-Wert von 0.230(57) e2b2 wurde relativ zu dem bekannten Wert des Isotops 112Sn bestimmt. Das Experiment wurde an der GSI Darmstadt mit Hilfe des RISING Detektors und des Fragmentseperators (FRS) durchgefuehrt. Sekundaere Strahlen (108Sn, 112Sn) mit einer Energie von ca. 150 MeV pro Nukleon wurden auf ein 386 mg/cm2 dickes 197Au Target geschossen. Die Projektilfragmente wurden mit Hilfe des Fragmentseparators selektiert und identifiziert. Zur Selektion des Reaktionskanals und zur Bestimmung des Winkels der gestreuten Fragmente wurde das Teilchenteleskop CATE, das sich hinter dem Target befand, verwendet. Gammastrahlung, die in Koinzidenz mit den Projektilrestkernen emittiert wurde, wurde in den Germanium-Cluster Detektoren des RISING Detektors nachgewiesen. Der gemessene B(E2,0+ -> 2+)-Wert von 108Sn ist in Uebereinstimmung mit neueren Schalenmodellrechnungen, die auf realistischen effektiven Wechselwirkungen basieren und im Rahmen eines verallgemeinerten Seniorit¨ats-Schemas erklaert werden.
Resumo:
In dieser Arbeit wurde gezeigt, wie oberflächenfunktionalisierte Polystyrolnanopartikel zur Herstellung von Metallchalkogenid/Polymer-Hybridnanopartikeln eingesetzt werden können. Dazu wurden zunächst phosphonsäure- und phosphorsäurefunktionalisierte Surfmere synthetisiert, die anschließend bei der Miniemulsionspolymerisation von Styrol verwendet wurden. Die Surfmere dienten dabei zugleich zur Stabilisierung und als Comonomer. Die oberflächenfunktionalisierten Polystyrolnanopartikel wurden anschließend als Trägerpartikel für die Kristallisation von Metalloxiden eingesetzt. Dabei wurden Metalloxid/Polymer-Hybridnanopartikel mit einer „himbeerartigen“ Morphologie erhalten. Um die vielseitige Modifizierbarkeit der phosphonat- und phosphat¬funktionalisierten Polystyrolpartikel zu demonstrieren, wurden Cer-, Eisen- sowie Zinkoxid auf der Partikeloberfläche kristallisiert. Dazu wurden sowohl wässrige als auch alkoholische Metalloxid-Präkursorlösungen eingesetzt. Die synthetisierten Metall¬oxid/Polymer-Hybridpartikel wurden detailliert mit REM, TEM und PXRD analysiert. Die Untersuchung des Kristallisationsmechanismus hatte erwiesen, dass die komplexierten Metallkationen auf der Partikeloberfläche als Nukleationszentren wirkten und die Zutropfrate des Fällungsreagenz entscheidend für die Oberflächenkristallisation ist. Durch Mischungsexperimente von Metalloxidnanopartikeln und den oberflächen¬funktionalisierten Polymerpartikeln konnte die Hybridpartikelbildung über Hetero¬koagulation ausgeschlossen werden. Außerdem wurde festgestellt, dass die Polarität der funktionellen Gruppe über die Stärke der Komplexierung der Metalloxid-Präkursor bestimmt. Darüber hinaus wurde ein Modell zur Erklärung der kolloidalen Stabilisierung der Metalloxid/Polymer-Hybridsysteme aufgestellt und ein Zusammenhang zwischen dem gemessenen Zeta-Potential und der Oberflächenbedeckung der Polymerpartikel durch Metalloxid gefunden. Mit der Methode der Oberflächenkristallisation konnten frühe Stadien der Nukleation auf der Partikeloberfläche fixiert werden. Weiterhin wurden die individuellen physikalisch-chemischen Eigenschaften der hergestellten Metall¬oxid/Polymer-Hybridnano¬partikel untersucht. Dabei zeigten die CeO2/Polymer-Hybridpartikel eine hohe katalytische Aktivität bezüglich der photokatalytischen Oxidation von Rhodamin B, die als Modellreaktion durchgeführt wurde. Des Weiteren wurde die Magnetisierung der Magnetit/Polymer-Hybridpartikel gemessen. Die Fe3O4-Hybrid¬partikelsysteme wiesen eine vergleichbare Sättigungsmagnetisierung auf. Die Zinkoxid/Polymer-Hybridsysteme zeigten eine starke Lumineszenz im sichtbaren Bereich bei Anregung mit UV-Licht. Die Metalloxid/Polymer-Hybridpartikel, die mit den phosphonat- oder phosphatfunktion¬alisierten Polystyrolpartikeln hergestellt wurden, zeigten keine signifikanten Unterschiede in ihren physikochemischen Eigenschaften. Im Allgemeinen lässt sich schlussfolgern, dass sowohl Phosphonat- als auch Phosphatgruppen gleichermaßen für die Oberflächenkristallisation von Metalloxiden geeignet sind. Die Zink¬oxid/Polymer-Hybridsysteme stellen eine Ausnahme dar. Die Verwendung der phosphonat¬funktionalisierten Polystyrolpartikel führte zur Entstehung einer Zinkhydroxidphase, die neben der Zinkoxidphase gebildet wurde. Aufgrund dessen zeigten die ZnO/RPO3H2-Hybridpartikel eine geringere Lumineszenz im sichtbaren Bereich als die ZnO/RPO4H2-Hybridsysteme.rnDie Erkenntnisse, die bei der Oberflächenkristallisation von Metalloxiden gewonnen wurden, konnten erfolgreich auf Cadmiumsulfid übertragen werden. Dabei konnte Cadmiumsulfid auf der Oberfläche von phosphonatfunktionalisierten Polystyrolpartikeln kristallisiert werden. Mit Hilfe des RPO3H2-Surfmers konnten phosphonatfunktion¬alisierte Polystyrolpartikel mit superparamagnetischem Kern synthetisiert werden, die zur Herstellung von multifunktionalen CdS/Polymer-Hybridpartikeln mit Magnetitkern verwendet wurden. Die Kristallphase und die Oberflächenbedeckung der multi¬funktionalen Hybridsysteme wurden mit den CdS/Polymer-Hybridsystemen ohne magnetischen Kern verglichen. Dabei konnte nachgewiesen werden, dass in beiden Fällen Cadmiumsulfid in der Greenockit-Modifikation gebildet wurde. Die multifunktionalen CdS/Polymer-Hybridpartikel mit superparamagnetischem Kern konnten sowohl mit einem optischen als auch einem magnetischen Stimulus angeregt werden.rnrn
Resumo:
Die Analyse optischer Spektren liefert einen kernmodellunabhängigen Zugang zur Bestimmung der Kernspins, Ladungsradien und elektromagnetischen Momente von Atomkernen im Grundzustand und von langlebigen Isomeren. Eine der vielseitigsten Methoden zur optischen Spektroskopie an kurzlebigen Isotopen ist die kollineare Laserspektroskopie. Im Rahmen dieser Arbeit wurde zum einen die TRIGA-LASER Strahlstrecke am Institut für Kernchemie der Universität Mainz durch die Implementierung einer neuen offline Oberflächenionenquelle für hohe Verdampfungstemperaturen und eines Strahlanalysesystems weiterentwickelt. Zum anderen wurde kollineare Laserspektroskopie an kurzlebigen Praseodym- und Cadmiumisotopen an ISOLDE/CERN durchgeführt. Die neue Ionenquelle ermöglichte dabei den Test der kollinearen Laserspektroskopie an Praseodymionen am TRIGA-LASER Experiment. Die Spektroskopie der Prasdeodymionen motivierte sich aus der Beobachtung einer zeitlichen Modulation der EC-Zerfallsrate von wasserstoffähnlichem 140Pr58+. Für die Erklärung dieser sogenannten GSI Oszillationen wird unter anderem das magnetische Moment des Kerns benötigt, welches bislang noch nicht experimentell bestimmt wurde. Zudem wurde für wasserstoffähnliches 140Pr58+ überraschenderweise eine kleinere EC-Zerfallskonstante gemessen als für heliumähnliches 140Pr57+. Die Erklärung dieses Phänomens setzt ein positives magnetisches Moment voraus. Bei der Spektroskopie am COLLAPS Experiment wurden erstmals die magnetischen Momente von 135Pr, 136Pr und 137Pr vermessen. Aufgrund zu geringer Produktionsraten war die Spektroskopie des gewünschten Isotops 140Pr jedoch nicht erfolgreich. Die Untersuchung der Cadmiumisotope ist kernphysikalisch motiviert. In der Zinnregion erstrecken sich die Isotope über die beiden magischen Zahlen N=50 und N=82 bei gleichzeitiger Nähe des Z=50 Schalenabschlusses. Hier können verschiedene Kernmodelle getestet werden, die sich beispielsweise hinsichtlich der Stärke des N=82 Schalenabschlusses widersprechen. Diese Arbeit berichtet über erste Ergebnisse der Spektroskopie an Cadmiumatomen, die sich über die Isotope 106−124,126Cd sowie die zugehörigen langlebigen I=11/2− Isomere erstreckt. Die zuvor experimentell bekannten oder aus dem erweiterten Schalenmodell abgeleiteten Kernspins konnten für alle Isotope bis auf 119Cd bestätigt werden. Der Kernspin von 119Cd wurde eindeutig zu I=1/2 bestimmt. Die elektrischen Quadrupolmomente der Isomere zeigen ein bemerkenswert lineares Verhalten in Abhängigkeit von der Neutronenzahl und dies über die eigentliche Kapazität der 1h11/2 Unterschale hinaus. Die Änderungen der mittleren quadratischen Ladungsradien zeigen den auch an Indium- und Zinnisotopen beobachteten stetigen Verlauf. Der lineare Anteil passt sehr gut zu den Berechnung des Tröpfchenmodells in der Parametrisierung nach Berchidevsky und Tondeur. Die Differenzen der mittleren quadratischen Ladungsradien zwischen Grund- und isomeren Zustand der ungeraden Cadmiumisotope zeigen einen interessanten parabolischen Verlauf mit einem Minimum zwischen A=117 und A=119.
Resumo:
Studies in regions of the nuclear chart in which the model predictions of properties of nuclei fail can bring a better understanding of the strong interaction in the nuclear medium. To such regions belongs the so called "island of inversion" centered around Ne, Na and Mg isotopes with 20 neutrons in which unexpected ground-state spins, large deformations and dense low-energy spectra appear. This is a strong argument that the magic N = 20 is not a closed shell in this area. In this thesis investigations of isotope shifts of stable 24,25,26Mg, as well as spins and magnetic moments of short-lived 29,31Mg are presented. The successful studies were performed at the ISOLDE facility at CERN using collinear laser and beta-NMR spectroscopy techniques. The isotopes were investigated as single-charged ions in the 280-nm transition from the atomic ground state 2S1/2 to one of the two lowest excited states 2P1/2,3/2 using continuous wave laser beams. The isotope-shift measurements with fluorescence detection for the three stable isotopes show that it is feasible to perform the same studies on radioactive Mg isotopes up to the "island of inversion". This will allow to determine differences in the mean charge square radii and interpret them in terms of deformation. The high detection efficiency for beta particles and optical pumping close to saturation allowed to obtain very good beta-asymmetry signals for 29Mg and 31Mg with half-lives around 1 s and production yields about 10^5 ions/s. For this purpose the ions were implanted into a host crystal lattice. Such detection of the atomic resonances revealed their hyperfine structure, which gives the sign and a first estimate of the value of the magnetic moment. The nuclear magnetic resonance gave also their g-factors with the relative uncertainty smaller than 0.2 %. By combining the two techniques also the nuclear spin of both isotopes could be unambiguously determined. The measured spins and g-factors show that 29Mg with 17 neutrons lies outside the "island of inversion". On the other hand, 31Mg with 19 neutrons has an unexpected ground-state spin which can be explained only by promoting at least two neutrons across the N = 20 shell gap. This places the above nucleus inside the "island". However, modern shell-model approaches cannot predict this level as the ground state but only as one of the low-lying states, even though they reproduce very well the experimental g-factor. This indicates that modifications to the available interactions are required. Future measurements include isotope shift measurements on radioactive Mg isotopes and beta-NMR studies on 33Mg.
Resumo:
Die vorliegende Arbeit beschäftigt sich mit der Hydrophobisierung anorganischer Nanopartikel für die Herstellung von Nanokompositen. Aufgrund der großen, reaktiven Oberfläche neigen Nanopartikel zur Aggregation, besonders in hydrophoben Medien. Literaturbekannte Verfahren der nachträglichen Modifizierung bereits existierender Partikeln führen nur teilweise zu gut redispergierbaren Partikeln in hydrophoben Medien. Da die Hülle erst nach der Partikelbildung erzeugt wird, läßt sich die Entstehung von Primäraggregaten nicht vermeiden. Die Neuheit der in dieser Arbeit angewandten Methode ist die Bildung der Partikelhülle vor der Entstehung der Partikel. Die Fällung der Nanopartikel innerhalb wäßriger Emulsionströpfchen schließt eine vorzeitige Aggregation der Partikel aus. Eine große Anzahl unterschiedlicher anorganischer Nanopartikel wurde hergestellt, deren Größe durch Variation der Syntheseparameter beeinflußt werden konnte. Ferner war es möglich, eine breite Variationsmöglichkeit der Art der Partikelhülle darzustellen, die sich als maßgeblich für die Kompatibilität zu einer Polymermatrix herausstellte. Die Kompatibilität zur Matrix ermöglichte eine einwandfreie Dispergierung von unterschiedlichen anorganischen Nanopartikeln im Kompositmaterial. Je nach Auswahl des anorganischen Materials können verschiedene Kompositeigenschaften, wie beispielsweise optische, elektrische, magnetische oder mechanische, beeinflußt werden. In dieser Arbeit wurde der Schwerpunkt auf eine erhöhte UV-Absorption gelegt, wobei sich auch eine verbesserte Schlagzähigkeit der Nanokomposite zeigte. Durch die hervorragende Dispergierung der Nanopartikel in der Matrix waren diese Nanokomposite hochtransparent.
Resumo:
Die vorliegende Arbeit ist im Zuge des DFG Projektes Spätpleistozäne, holozäne und aktuelle Geomorphodynamik in abflusslosen Becken der Mongolischen Gobi´´ entstanden. Das Arbeitsgebiet befindet sich in der südlichen Mongolei im nördlichen Teil der Wüste Gobi. Neben einigen Teilen der Sahara (Heintzenberg, 2009), beispielsweise das Bodélé Becken des nördlichen Tschads (z.B. Washington et al., 2006a; Todd et al., 2006; Warren et al., 2007) wird Zentralasien als ein Hauptliefergebiet für Partikel in die globale Zirkulation der Atmosphäre gesehen (Goudie, 2009). Hauptaugenmerk liegt hierbei besonders auf den abflusslosen Becken und deren Sedimentablagerungen. Die, der Deflation ausgesetzten Flächen der Seebecken, sind hauptsächliche Quelle für Partikel die sich in Form von Staub respektive Sand ausbreiten. Im Hinblick auf geomorphologische Landschaftsentwicklung wurde der Zusammenhang von Beckensedimenten zu Hangdepositionen numerisch simuliert. Ein von Grunert and Lehmkuhl (2004) publiziertes Model, angelehnt an Ideen von Pye (1995) wird damit in Betracht gezogen. Die vorliegenden Untersuchungen modellieren Verbreitungsmechanismen auf regionaler Ebene ausgehend von einer größeren Anzahl an einzelnen punktuellen Standorten. Diese sind repräsentativ für die einzelnen geomorphologischen Systemglieder mit möglicherweise einer Beteiligung am Budget aeolischer Geomorphodynamik. Die Bodenbedeckung durch das charakteristische Steinpflaster der Gobi - Region, sowie unter anderem Korngrößenverteilungen der Oberflächensedimente wurden untersucht. Des Weiteren diente eine zehnjährige Zeitreihe (Jan 1998 bis Dez 2007) meteorologischer Daten als Grundlage zur Analyse der Bedingungen für äolische Geomorphodynamik. Die Daten stammen von 32 staatlichen mongolischen Wetterstationen aus der Region und Teile davon wurden für die Simulationen verwendet. Zusätzlich wurden atmosphärische Messungen zur Untersuchung der atmosphärischen Stabilität und ihrer tageszeitlichen Variabilität mit Mess-Drachenaufstiegen vorgenommen. Die Feldbefunde und auch die Ergebnisse der Laboruntersuchungen sowie der Datensatz meteorologischer Parameter dienten als Eingangsparameter für die Modellierungen. Emissionsraten der einzelnen Standorte und die Partikelverteilung im 3D Windfeld wurden modelliert um die Konvektivität der Beckensedimente und Hangdepositionen zu simulieren. Im Falle hoher mechanischer Turbulenz der bodennahen Luftschicht (mit einhergehender hoher Wind Reibungsgeschwindigkeit), wurde generell eine neutrale Stabilität festgestellt und die Simulationen von Partikelemission sowie deren Ausbreitung und Deposition unter neutraler Stabilitätsbedingung berechnet. Die Berechnung der Partikelemission wurde auf der Grundlage eines sehr vereinfachten missionsmodells in Anlehnung an bestehende Untersuchungen (Laurent et al., 2006; Darmenova et al., 2009; Shao and Dong, 2006; Alfaro, 2008) durchgeführt. Sowohl 3D Windfeldkalkulationen als auch unterschiedliche Ausbreitungsszenarien äolischer Sedimente wurden mit dem kommerziellen Programm LASAT® (Lagrange-Simulation von Aerosol-Transport) realisiert. Diesem liegt ein Langargischer Algorithmus zugrunde, mittels dessen die Verbreitung einzelner Partikel im Windfeld mit statistischer Wahrscheinlichkeit berechnet wird. Über Sedimentationsparameter kann damit ein Ausbreitungsmodell der Beckensedimente in Hinblick auf die Gebirgsfußflächen und -hänge generiert werden. Ein weiterer Teil der Untersuchungen beschäftigt sich mit der geochemischen Zusammensetzung der Oberflächensedimente. Diese Proxy sollte dazu dienen die simulierten Ausbreitungsrichtungen der Partikel aus unterschiedlichen Quellregionen nach zu verfolgen. Im Falle der Mongolischen Gobi zeigte sich eine weitestgehende Homogenität der Minerale und chemischen Elemente in den Sedimenten. Laser Bebohrungen einzelner Sandkörner zeigten nur sehr leichte Unterschiede in Abhängigkeit der Quellregionen. Die Spektren der Minerale und untersuchten Elemente deuten auf graitische Zusammensetzungen hin. Die, im Untersuchungsgebiet weit verbreiteten Alkali-Granite (Jahn et al., 2009) zeigten sich als hauptverantwortlich für die Sedimentproduktion im Untersuchungsgebiet. Neben diesen Mineral- und Elementbestimmungen wurde die Leichtmineralfraktion auf die Charakteristik des Quarzes hin untersucht. Dazu wurden Quarzgehalt, Kristallisation und das Elektronen-Spin-Resonanz Signal des E’1 - Centers in Sauerstoff Fehlstellungen des SiO2 Gitters bestimmt. Die Untersuchungen sind mit dem Methodenvorschlag von Sun et al. (2007) durchgeführt worden und sind prinzipiell gut geeignet um Herkunftsanalysenrndurchzuführen. Eine signifikante Zuordnung der einzelnen Quellgebiete ist jedoch auch in dieser Proxy nicht zu finden gewesen.
Resumo:
Die kollineare Laserspektroskopie hat sich in den vergangenen drei Jahrzehnten zur Bestimmung der Kernladungsradien mittelschwerer und schwerer kurzlebiger Atomkerne in ausgezeichneter Weise bewährt. Auf die Isotope sehr leichter Elemente konnte sie allerdings erst kürzlich erweitert werden. Dieser Bereich der Nuklidkarte ist von besonderem Interesse, denn die ersten ab-initio Modelle der Kernphysik, die den Aufbau eines Atomkerns basierend auf individuellen Nukleonen und realistischenWechselwirkungspotentialen beschreiben, sind gegenwärtig nur für die leichtesten Elemente anwendbar. Außerdem existiertrnin dieser Region eine besonders exotische Form von Atomkernen, die sogenanntenrnHalokerne. Die Isotopenkette der Berylliumisotope zeichnet sich durch das Auftreten des Ein-Neutronen Halokerns 11Be und des Zwei- oder Vier-Neutronen-Halos 14Be aus. Dem Isotop 12Be kommt durch seine Position zwischen diesen beiden Exoten und den im Schalenmodell erwarteten magischen Schalenabschluss N = 8 eine besondere Bedeutung zu.rnIm Rahmen dieser Arbeit wurden mehrere frequenzstabilisierte Lasersysteme für die kollineare Laserspektroskopie aufgebaut. An TRIGA-SPEC stehen nun unter anderem ein frequenzverdoppeltes Diodenlasersystem mit Trapezverstärker und frequenzkammstabilisierter Titan-Saphirlaser mit Frequenzverdopplungsstufe für die Spektroskopie an refraktären Elementen oberhalb von Molybdän zur Verfügung, die für erste Testexperimente eingesetzt wurden. Außerdem wurde die effiziente Frequenzvervierfachung eines Titan-Saphirlasers demonstriert. An ISOLDE/CERN wurde ein frequenzkammstabilisierter und ein jodstabilisierter Farbstofflaser installiert und für die Laserspektroskopie an 9,10,11,12Be eingesetzt. Durch das verbesserte Lasersystem und den Einsatz eines verzögerten Koinzidenznachweises für Photonen und Ionen gelang es die Empfindlichkeitrnder Berylliumspektroskopie um mehr als zwei Größenordnungen zu steigern und damit die früheren Messungen an 7−11Be erstmals auf das Isotop 12Be auszuweiten. Außerdem wurde die Genauigkeit der absoluten Übergangsfrequenzen und der Isotopieverschiebungen der Isotope 9,10,11Be signifikant verbessert.rnDurch den Vergleich mit Ergebnissen des Fermionic Molecular Dynamics Modells kann der Trend der Ladungsradien der leichteren Isotope durch die ausgeprägte Clusterstruktur der Berylliumkerne erklärt werden. Für 12Be wird ersichtlich, dass der Grundzustand durch eine (sd)2 Konfiguration statt der vom Schalenmodell erwarteten p2 Konfiguration dominiert wird. Dies ist ein klares Indiz für das bereits zuvor beobachtete Verschwinden des N = 8 Schalenabschlusses bei 12Be.
Resumo:
Im Rahmen dieser Arbeit wurden amphiphile Co- und Terpolymere verwendet, um die Grenzflächeneigenschaften anorganischer Nanopartikel zu kontrollieren. Es wurde eine effiziente und vielseitige Methode entwickelt, mit der in-situ hydrophobierte, formanisotrope ZnO-, CdS- und Au-Nanopartikel sowie poröse TiO2-Nanopartikel hergestellt werden konnten. Diese Technik basierte auf der Fällung anorganischer Nanopartikel in einer inversen Emulsion mittels kombinierten Einsatzes zweier maßgeschneiderter amphiphiler Polymere. Ein Copolymer ermöglichte sowohl die Stabilisierung der Emulsion als auch die Hydrophobierung der Partikel, und ein weiteres Struktur-dirigierendes Agens (SDA) kontrollierte den Kristallisationsprozess. Infolge ihrer Form zeigten die Nanopartikel von sphärischen Teilchen abweichende Lagen der Oberflächenplasmonenresonanz und der Bandlücke. Aufgrund der hervorragenden Hydrophobierung dieser Kolloide mittels amphiphiler Copolymere konnten diese homogen in polymere Materialien eingearbeitet werden. Dies erlaubte es die speziellen Eigenschaften von nicht-sphärischen Kolloiden auf Nanokompositmaterialien zu übertragen. Darüber hinaus wurden amphipolare Copolymere genutzt, um superhydrophobe Oberflächen zu generieren. Hierzu wurden Filme bestehend aus rauen SiO2-Nanopartikeln mit fluorierten Emulgatoren beschichtet. In einem dritten Schwerpunkt dieser Arbeit wurden amphiphile Co- und Terpolymere verwendet, um anorganische Nanopartikel zu hydrophilieren. Durch Variation der Emulgatorzusammensetzung konnten die Ladung und Ladungsdichte auf der Partikeloberfläche gezielt gesteuert werden. Darüber hinaus konnte die Partikelhülle zusätzlich mit Farbstoffmolekülen funktionalisiert werden, was den erfolgreichen Einsatz der Kolloide in Zellaufnahmeexperimenten ermöglichte.
Resumo:
The complex nature of the nucleon-nucleon interaction and the wide range of systems covered by the roughly 3000 known nuclides leads to a multitude of effects observed in nuclear structure. Among the most prominent ones is the occurence of shell closures at so-called ”magic numbers”, which are explained by the nuclear shell model. Although the shell model already is on duty for several decades, it is still constantly extended and improved. For this process of extension, fine adjustment and verification, it is important to have experimental data of nuclear properties, especially at crucial points like in the vicinity of shell closures. This is the motivation for the work performed in this thesis: the measurement and analysis of nuclear ground state properties of the isotopic chain of 100−130Cd by collinear laser spectroscopy.rnrnThe experiment was conducted at ISOLDE/CERN using the collinear laser spectroscopy apparatus COLLAPS. This experiment is the continuation of a run on neutral atomic cadmium from A = 106 to A = 126 and extends the measured isotopes to even more exotic species. The required gain in sensitivity is mainly achieved by using a radiofrequency cooler and buncher for background reduction and by using the strong 5s 2S1/2 → 5p 2P3/2 transition in singly ionized Cd. The latter requires a continuous wave laser system with a wavelength of 214.6 nm, which has been developed during this thesis. Fourth harmonic generation of an infrared titanium sapphire laser is achieved by two subsequent cavity-enhanced second harmonic generations, leading to the production of deep-UV laser light up to about 100 mW.rnrnThe acquired data of the Z = 48 Cd isotopes, having one proton pair less than the Z = 50 shell closure at tin, covers the isotopes from N = 52 up to N = 82 and therefore almost the complete region between the neutron shell closures N = 50 and N = 82. The isotope shifts and the hyperfine structures of these isotopes have been recorded and the magnetic dipole moments, the electric quadrupole moments, spins and changes in mean square charge radii are extracted. The obtained data reveal among other features an extremely linear behaviour of the quadrupole moments of the I = 11/2− isomeric states and a parabolic development in differences in mean square nuclear charge radii between ground and isomeric state. The development of charge radii between the shell closures is smooth, exposes a regular odd-even staggering and can be described and interpreted in the model of Zamick and Thalmi.
Resumo:
Im Rahmen dieser Arbeit wurde ein neuartiger Experimentaufbau -- das γ3 Experiment -- zur Messung von photoneninduzierten Kern-Dipolanregungen in stabilen Isotopen konzipiert und an der High Intensity γ-Ray Source (HIγS) an der Duke University installiert.rnDie hohe Energieauflösung und die hohe Nachweiseffizienz des Detektoraufbaus, welcher aus einer Kombination von LaBr Szintillatoren und hochreinen Germanium-Detektoren besteht, erlaubt erstmals die effiziente Messung von γ-γ-Koinzidenzen in Verbindung mit der Methode der Kernresonanzfluoreszenz.rnDiese Methode eröffnet den Zugang zum Zerfallsverhalten der angeregten Dipolzustände als zusätzlicher Observablen, die ein detaillierteres Verständnis der zugrunde liegenden Struktur dieser Anregungen ermöglicht.rnDer Detektoraufbau wurde bereits erfolgreich im Rahmen von zwei Experimentkampagnen in 2012 und 2013 für die Untersuchung von 13 verschiedenen Isotopen verwendet. Im Fokus dieser Arbeit stand die Analyse der Pygmy-Dipolresonanz (PDR) im Kern 140Ce im Energiebereich von 5,2 MeV bis 8,3 MeV basierend auf den mit dem γ3 Experimentaufbau gemessenen Daten. Insbesondere das Zerfallsverhalten der Zustände, die an der PDR beteiligt sind, wurde untersucht. Der Experimentaufbau, die Details der Analyse sowie die Resultate werden in der vorliegenden Arbeit präsentiert. Desweiteren erlaubt ein Vergleich der Ergebnisse mit theoretischen Rechnungen im quasi-particle phonon model (QPM) eine Interpretation des beobachteten Zerfallsverhaltens.
Resumo:
In this thesis, three different types of quantum rings arestudied. These are quantum rings with diamagnetic,paramagnetic or spontaneous persistent currents. It turns out that the main observable to characterizequantum rings is the Drude weight. Playing a key role inthis thesis, it will be used to distinguish betweendiamagnetic (positive Drude weight) and paramagnetic(negative Drude weight) ring currents. In most models, theDrude weight is positive. Especially in the thermodynamiclimit, it is positive semi-definite. In certain modelshowever, intuitivelysurprising, a negative Drude weight is found. This rareeffect occurs, e.g., in one-dimensional models with adegenerate ground state in conjunction with the possibilityof Umklapp scattering. One aim of this thesis is to examineone-dimensional quantum rings for the occurrence of anegative Drude weight. It is found, that the sign of theDrude weight can also be negative, if the band structurelacks particle-hole symmetry. The second aim of this thesis is the modeling of quantumrings intrinsically showing a spontaneous persistentcurrent. The construction of the model starts from theextended Hubbard model on a ring threaded by anAharonov-Bohm flux. A feedback term through which thecurrent in the ring can generate magnetic flux is added.Another extension of the Hamiltonian describes the energystored in the internally generated field. This model isevaluated using exact diagonalization and an iterativescheme to find the minima of the free energy. The quantumrings must satisfy two conditions to exhibit a spontaneousorbital magnetic moment: a negative Drude weight and aninductivity above the critical level. The magneticproperties of cyclic conjugated hydrocarbons likebenzene due to electron delocalization [magnetic anisotropy,magnetic susceptibility exaltation, nucleus-independent chemical shift (NICS)]---that have become important criteriafor aromaticity---can be examined using this model. Corrections to the presented calculations are discussed. Themost substantial simplification made in this thesis is theneglect of the Zeeman interaction of the electron spins withthe magnetic field. If a single flux tube threads a quantumring, the Zeeman interaction is zero, but in mostexperiments, this situation is difficult to realize. In themore realistic situation of a homogeneous field, the Zeemaninteraction has to be included, if the electrons have atotal spin component in the direction of the magnetic field,or if the magnetic field is strong.
Resumo:
A polar stratospheric cloud submodel has been developed and incorporated in a general circulation model including atmospheric chemistry (ECHAM5/MESSy). The formation and sedimentation of polar stratospheric cloud (PSC) particles can thus be simulated as well as heterogeneous chemical reactions that take place on the PSC particles. For solid PSC particle sedimentation, the need for a tailor-made algorithm has been elucidated. A sedimentation scheme based on first order approximations of vertical mixing ratio profiles has been developed. It produces relatively little numerical diffusion and can deal well with divergent or convergent sedimentation velocity fields. For the determination of solid PSC particle sizes, an efficient algorithm has been adapted. It assumes a monodisperse radii distribution and thermodynamic equilibrium between the gas phase and the solid particle phase. This scheme, though relatively simple, is shown to produce particle number densities and radii within the observed range. The combined effects of the representations of sedimentation and solid PSC particles on vertical H2O and HNO3 redistribution are investigated in a series of tests. The formation of solid PSC particles, especially of those consisting of nitric acid trihydrate, has been discussed extensively in recent years. Three particle formation schemes in accordance with the most widely used approaches have been identified and implemented. For the evaluation of PSC occurrence a new data set with unprecedented spatial and temporal coverage was available. A quantitative method for the comparison of simulation results and observations is developed and applied. It reveals that the relative PSC sighting frequency can be reproduced well with the PSC submodel whereas the detailed modelling of PSC events is beyond the scope of coarse global scale models. In addition to the development and evaluation of new PSC submodel components, parts of existing simulation programs have been improved, e.g. a method for the assimilation of meteorological analysis data in the general circulation model, the liquid PSC particle composition scheme, and the calculation of heterogeneous reaction rate coefficients. The interplay of these model components is demonstrated in a simulation of stratospheric chemistry with the coupled general circulation model. Tests against recent satellite data show that the model successfully reproduces the Antarctic ozone hole.
Resumo:
The present thesis is concerned with the study of a quantum physical system composed of a small particle system (such as a spin chain) and several quantized massless boson fields (as photon gasses or phonon fields) at positive temperature. The setup serves as a simplified model for matter in interaction with thermal "radiation" from different sources. Hereby, questions concerning the dynamical and thermodynamic properties of particle-boson configurations far from thermal equilibrium are in the center of interest. We study a specific situation where the particle system is brought in contact with the boson systems (occasionally referred to as heat reservoirs) where the reservoirs are prepared close to thermal equilibrium states, each at a different temperature. We analyze the interacting time evolution of such an initial configuration and we show thermal relaxation of the system into a stationary state, i.e., we prove the existence of a time invariant state which is the unique limit state of the considered initial configurations evolving in time. As long as the reservoirs have been prepared at different temperatures, this stationary state features thermodynamic characteristics as stationary energy fluxes and a positive entropy production rate which distinguishes it from being a thermal equilibrium at any temperature. Therefore, we refer to it as non-equilibrium stationary state or simply NESS. The physical setup is phrased mathematically in the language of C*-algebras. The thesis gives an extended review of the application of operator algebraic theories to quantum statistical mechanics and introduces in detail the mathematical objects to describe matter in interaction with radiation. The C*-theory is adapted to the concrete setup. The algebraic description of the system is lifted into a Hilbert space framework. The appropriate Hilbert space representation is given by a bosonic Fock space over a suitable L2-space. The first part of the present work is concluded by the derivation of a spectral theory which connects the dynamical and thermodynamic features with spectral properties of a suitable generator, say K, of the time evolution in this Hilbert space setting. That way, the question about thermal relaxation becomes a spectral problem. The operator K is of Pauli-Fierz type. The spectral analysis of the generator K follows. This task is the core part of the work and it employs various kinds of functional analytic techniques. The operator K results from a perturbation of an operator L0 which describes the non-interacting particle-boson system. All spectral considerations are done in a perturbative regime, i.e., we assume that the strength of the coupling is sufficiently small. The extraction of dynamical features of the system from properties of K requires, in particular, the knowledge about the spectrum of K in the nearest vicinity of eigenvalues of the unperturbed operator L0. Since convergent Neumann series expansions only qualify to study the perturbed spectrum in the neighborhood of the unperturbed one on a scale of order of the coupling strength we need to apply a more refined tool, the Feshbach map. This technique allows the analysis of the spectrum on a smaller scale by transferring the analysis to a spectral subspace. The need of spectral information on arbitrary scales requires an iteration of the Feshbach map. This procedure leads to an operator-theoretic renormalization group. The reader is introduced to the Feshbach technique and the renormalization procedure based on it is discussed in full detail. Further, it is explained how the spectral information is extracted from the renormalization group flow. The present dissertation is an extension of two kinds of a recent research contribution by Jakšić and Pillet to a similar physical setup. Firstly, we consider the more delicate situation of bosonic heat reservoirs instead of fermionic ones, and secondly, the system can be studied uniformly for small reservoir temperatures. The adaption of the Feshbach map-based renormalization procedure by Bach, Chen, Fröhlich, and Sigal to concrete spectral problems in quantum statistical mechanics is a further novelty of this work.
Resumo:
Core-shell macromolecules with dendritic polyphenylene core and polymer shell Zusammenfassung / Abstract Core-shell macromolecular structures have become of great interest in materials science because they gave an opportunity to combine a large variety of chemical and physical properties in the single molecule, by combination of different (in terms of chemistry and physics) cores and shells. The interest in such complex structures was provoked by their potential applications in the coating and painting industry (latexes), as supports for catalysts in polymer industry, or as nano-containers and transporters for genes or drug delivery. The aim of this study was the synthesis, characterization and further application of core-shell macromolecules possessing a hydrophobic stiff core (polyphenylene dendrimers) surrounded with a hydrophilic, soft, covalently bonded polymer shell (poly(ethylene oxide) and its copolymers). The requirements for such complex substances were that they should be well-defined in terms of molecular weight (narrow molecular weight distribution) and in molecular structure. The preparation of core-shell molecules containing dendrimer as a core was possible via two synthetic routs: “grafting-onto” and “grafting-from”. The resulting core-shell macromolecules possessed narrow polydispersity as guaranteed by the excellent structural and functional definition of the dendrimer and the narrow polydispersity of the PEO, PS-b-PEO and PI-b-PEO attached to the dendrimer surface. Additional investigation of the size of the particles indicated a relation between both the length and the number of the polymer chains and the hydrodynamic radius determined by Dynamic Light Scattering and Fluorescent Correlation Spectroscopy. Core-shell nano-particles were applied as metallocene supports in heterogeneous olefin polymerizations. Our results indicate that such catalyst systems, that have a size of at least one order of magnitude smaller than the used by now organic supports, could be very useful as model compounds for investigations on catalyst fragmentation and its influence on the product parameters.
Resumo:
The last decade has witnessed an exponential growth of activities in the field of nanoscience and nanotechnology worldwide, driven both by the excitement of understanding new science and by the potential hope for applications and economic impacts. The largest activity in this field up to date has been in the synthesis and characterization of new materials consisting of particles with dimensions in the order of a few nanometers, so-called nanocrystalline materials. [1-8] Semiconductor nanomaterials such as III/V or II/VI compound semiconductors exhibit strong quantum confinement behavior in the size range from 1 to 10 nm. Therefore, preparation of high quality semiconductor nanocrystals has been a challenge for synthetic chemists, leading to the recent rapid progress in delivering a wide variety of semiconducting nanomaterials. Semiconductor nanocrystals, also called quantum dots, possess physical properties distinctly different from those of the bulk material. Typically, in the size range from 1 to 10 nm, when the particle size is changed, the band gap between the valence and the conduction band will change, too. In a simple approximation a particle in a box model has been used to describe the phenomenon[9]: at nanoscale dimensions the degenerate energy states of a semiconductor separate into discrete states and the system behaves like one big molecule. The size-dependent transformation of the energy levels of the particles is called “quantum size-effect”. Quantum confinement of both the electron and hole in all three dimensions leads to an increase in the effective bandgap of the material with decreasing crystallite size. Consequently, both the optical absorption and emission of semiconductor nanaocrystals shift to the blue (higher energies) as the size of the particles gets smaller. This color tuning is well documented for CdSe nanocrystals whose absorption and emission covers almost the whole visible spectral range. As particle sizes become smaller the ratio of surface atoms to those in the interior increases, which has a strong impact on particle properties, too. Prominent examples are the low melting point [8] and size/shape dependent pressure resistance [10] of semiconductor nanocrystals. Given the size dependence of particle properties, chemists and material scientists now have the unique opportunity to change the electronic and chemical properties of a material by simply controlling the particle size. In particular, CdSe nanocrystals have been widely investigated. Mainly due to their size-dependent optoelectronic properties [11, 12] and flexible chemical processibility [13], they have played a distinguished role for a number of seminal studies [11, 12, 14, 15]. Potential technical applications have been discussed, too. [8, 16-27] Improvement of the optoelectronic properties of semiconductor nanocrystals is still a prominent research topic. One of the most important approaches is fabricating composite type-I core-shell structures which exhibit improved properties, making them attractive from both a fundamental and a practical point of view. Overcoating of nanocrystallites with higher band gap inorganic materials has been shown to increase the photoluminescence quantum yields by eliminating surface nonradiative recombination sites. [28] Particles passivated with inorganic shells are more robust than nanocrystals covered by organic ligands only and have greater tolerance to processing conditions necessary for incorporation into solid state structures or for other applications. Some examples of core-shell nanocrystals reported earlier include CdS on CdSe [29], CdSe on CdS, [30], ZnS on CdS, [31] ZnS on CdSe[28, 32], ZnSe on CdSe [33] and CdS/HgS/CdS [34]. The characterization and preparation of a new core-shell structure, CdSe nanocrystals overcoated by different shells (CdS, ZnS), is presented in chapter 4. Type-I core-shell structures as mentioned above greatly improve the photoluminescence quantum yield and chemical and photochemical stability of nanocrystals. The emission wavelengths of type-I core/shell nanocrystals typically only shows a small red-shift when compared to the plain core nanocrystals. [30, 31, 35] In contrast to type-I core-shell nanocrystals, only few studies have been conducted on colloidal type-II core/shell structures [36-38] which are characterized by a staggered alignment of conduction and valence bands giving rise to a broad tunability of absorption and emission wavelengths, as was shown for CdTe/CdSe core-shell nanocrystals. [36] The emission of type-II core/shell nanocrystals mainly originates from the radiative recombination of electron-hole pairs across the core-shell interface leading to a long photoluminescence lifetime. Type-II core/shell nanocrystals are promising with respect to photoconduction or photovoltaic applications as has been discussed in the literature.[39] Novel type-II core-shell structures with ZnTe cores are reported in chapter 5. The recent progress in the shape control of semiconductor nanocrystals opens new fields of applications. For instance, rod shaped CdSe nanocrystals can enhance the photo-electro conversion efficiency of photovoltaic cells, [40, 41] and also allow for polarized emission in light emitting diodes. [42, 43] Shape control of anisotropic nanocrystals can be achieved by the use of surfactants, [44, 45] regular or inverse micelles as regulating agents, [46, 47] electrochemical processes, [48] template-assisted [49, 50] and solution-liquid-solution (SLS) growth mechnism. [51-53] Recently, formation of various CdSe nanocrystal shapes has been reported by the groups of Alivisatos [54] and Peng, [55] respectively. Furthermore, it has been reported by the group of Prasad [56] that noble metal nanoparticles can induce anisotropic growth of CdSe nanocrystals at lower temperatures than typically used in other methods for preparing anisotropic CdSe structures. Although several approaches for anisotropic crystal growth have been reported by now, developing new synthetic methods for the shape control of colloidal semiconductor nanocrystals remains an important goal. Accordingly, we have attempted to utilize a crystal phase control approach for the controllable synthesis of colloidal ZnE/CdSe (E = S, Se, Te) heterostructures in a variety of morphologies. The complex heterostructures obtained are presented in chapter 6. The unique optical properties of nanocrystals make them appealing as in vivo and in vitro fluorophores in a variety of biological and chemical investigations, in which traditional fluorescence labels based on organic molecules fall short of providing long-term stability and simultaneous detection of multiple emission colours [References]. The ability to prepare water soluble nanocrystals with high stability and quantum yield has led to promising applications in cellular labeling, [57, 58] deep-tissue imaging, [59, 60] and assay labeling [61, 62]. Furthermore, appropriately solubilized nanocrystals have been used as donors in fluorescence resonance energy transfer (FRET) couples. [63-65] Despite recent progress, much work still needs to be done to achieve reproducible and robust surface functionalization and develop flexible (bio-) conjugation techniques. Based on multi-shell CdSe nanocrystals, several new solubilization and ligand exchange protocols have been developed which are presented in chapter 7. The organization of this thesis is as follows: A short overview describing synthesis and properties of CdSe nanocrystals is given in chapter 2. Chapter 3 is the experimental part providing some background information about the optical and analytical methods used in this thesis. The following chapters report the results of this work: synthesis and characterization of type-I multi-shell and type-II core/shell nanocrystals are described in chapter 4 and chapter 5, respectively. In chapter 6, a high–yield synthesis of various CdSe architectures by crystal phase control is reported. Experiments about surface modification of nanocrystals are described in chapter 7. At last, a short summary of the results is given in chapter 8.