3 resultados para viral

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin-6 (IL-6) aktiviert Zielzellen durch Bindung an den Interleukin-6-Rezeptor (IL-6R) und anschließende Homodimerisierung von gp130. IL-6 alleine kann nur Zellen aktivieren, die IL-6R exprimieren, der Komplex aus IL-6 und löslichem IL-6R (sIL-6R) kann gp130 auf Zellen aktivieren, die keinen IL-6R exprimieren. Von gp130 gibt es eine lösliche Form (sgp130), die in Komplexen mit sIL-6R und IL-6 vorliegen kann.Es wurden rekombinante Versionen von sgp130 konstruiert, exprimiert und aufgereinigt. Die sgp130 Proteine inhibieren die sIL-6R-abhängige Stimulation von Zellen, nicht jedoch über membrangebundenen IL-6R vermittelte IL-6-Aktivitäten. sgp130 inhibiert also selektiv sIL-6R-abhängige Antworten und hat keinen Einfluß auf IL-6-Antworten über membrangebundenen IL-6R.Das Genom von Humanem Herpesvirus-8 kodiert für ein virales IL-6 (vIL-6). Um zu klären, ob vIL-6 direkt an IL-6R oder gp130 bindet, wurden Immunpräzipitationen mit radioaktiv markiertem vIL-6 durchgeführt. Dabei zeigte vIL-6 eine direkte Interaktion mit gp130, nicht jedoch mit IL-6R.Die biologische Aktivität von vIL-6 ist IL-6R-unabhängig. Es gibt keinen Unterschied in der Effektivität von vIL-6 bei der Stimulation von Zellen die nur gp130 oder gp130 und IL-6R exprimieren. Die Ergebnisse demonstrieren, daß vIL-6 das erste bekannte Zytokin ist, welches direkt gp130 binden und aktivieren kann.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expression of antibodies in plant against essential viral proteins could provide an alternative approach to engineered viral resistance. Engineered single chain Fv antibodies scFV are particularly suitable for expression in plant because of their small size and the lack of assembly requirements. RNA-dependent RNA polymerases (RdRps) function as the catalytic subunit of viral replicases required for the replication of all positive strand RNA viruses. By using Phage technology we selected scFvs from a phage library using purified E.coli expressed TBSV(Tomato bushy stunt virus) replicase as antigen. The scFvs mediated-inhibition of RdRp activity was studied in vitro and in planta. In vitro experiments showed the inhibition of CNV(Cucumber necrosis virus) and TCV(Turnip crinkle virus) RdRp. Transient in planta assays based on agroinfiltration and an infectious clone of TBSV demonstrated the inhibition of the replication of TBSV(Tomato bushy stunt virus). Epitope mapping showed that the selected scFvs target the motif E of RdRp which is involved in template binding.Moreover T1 plants of transgenic lines of N. benthamiana expressing different scFvs either in the cytoplasm or the ER (endoplasmic reticulum) showed a high level of resistance against infection with TBSV and RCNMV(Red clover necrotic mosaic virus) upon inoculation with virus particles. This is the first report that scFvs against a RdRp of a plant viruses can inhibit viral replication in vivo. The resistance is even efficient against viruses belonging to different virus families.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A viral vector system was developed based on a DI-RNA, a sub-viral particle derived from TBSV-BS3-statice. This newly designed vector system was tested for its applicability in protein expression and induction of gene silencing. Two strategies were pursued. The first strategy was replication of the DI-RNA by a transgenically expressed TBSV replicase and the second was the replication by a so called helper virus. It could be demonstrated by northern blot analysis that the replicase, expressed by the transgenic N. benthamiana plant line TR4 or supplied by the helper virus, is able to replicate DI-RNA introduced into the plant cells. Various genes were inserted into different DI constructs in order to study the vector system with regard to protein expression. However, independent of how the replicase was provided no detectable amounts of protein were produced in the plants. Possible reasons for this failure are identified: the lack of systemic movement of the DI-RNA in the transgenic TR4 plants and the occurrence of deletions in the inserted genes in both systems. As a consequence the two strategies were considered unsuitable for protein expression. The DI-RNA vector system was able to induce silencing of transgenes as well as endogenous genes. Several different p19 deficient helper virus constructs were made to evaluate their silencing efficiency in combination with our DI-RNA constructs. However, it was found that our vector system can not compete with other existing VIGS (virus induced gene silencing) systems in this field. Finally, the influence of DI sequences on mRNA stability on transient GUS expression experiments in GUS silenced plants was evaluated. The GUS reporter gene system was found to be unsuitable for distinguishing between expression levels of wild type plants and GUS silenced transgenic plants. The results indicate a positive effect of the DI sequences on the level of protein expression and therefore further research into this area is recommended.