2 resultados para topological inaccuracy
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
It is currently widely accepted that the understanding of complex cell functions depends on an integrated network theoretical approach and not on an isolated view of the different molecular agents. Aim of this thesis was the examination of topological properties that mirror known biological aspects by depicting the human protein network with methods from graph- and network theory. The presented network is a partial human interactome of 9222 proteins and 36324 interactions, consisting of single interactions reliably extracted from peer-reviewed scientific publications. In general, one can focus on intra- or intermodular characteristics, where a functional module is defined as "a discrete entity whose function is separable from those of other modules". It is found that the presented human network is also scale-free and hierarchically organised, as shown for yeast networks before. The interactome also exhibits proteins with high betweenness and low connectivity which are biologically analyzed and interpreted here as shuttling proteins between organelles (e.g. ER to Golgi, internal ER protein translocation, peroxisomal import, nuclear pores import/export) for the first time. As an optimisation for finding proteins that connect modules, a new method is developed here based on proteins located between highly clustered regions, rather than regarding highly connected regions. As a proof of principle, the Mediator complex is found in first place, the prime example for a connector complex. Focusing on intramodular aspects, the measurement of k-clique communities discriminates overlapping modules very well. Twenty of the largest identified modules are analysed in detail and annotated to known biological structures (e.g. proteasome, the NFκB-, TGF-β complex). Additionally, two large and highly interconnected modules for signal transducer and transcription factor proteins are revealed, separated by known shuttling proteins. These proteins yield also the highest number of redundant shortcuts (by calculating the skeleton), exhibit the highest numbers of interactions and might constitute highly interconnected but spatially separated rich-clubs either for signal transduction or for transcription factors. This design principle allows manifold regulatory events for signal transduction and enables a high diversity of transcription events in the nucleus by a limited set of proteins. Altogether, biological aspects are mirrored by pure topological features, leading to a new view and to new methods that assist the annotation of proteins to biological functions, structures and subcellular localisations. As the human protein network is one of the most complex networks at all, these results will be fruitful for other fields of network theory and will help understanding complex network functions in general.
Resumo:
In dieser Arbeit untersuchen wir mittels zeitaufgelöster Abbildungen die Gigahertz-Dynamik von magnetischen Skyrmionen, um die Bewegungsgleichungen für diese Quasiteilchen zu bestimmen. Um dieses Ziel zu erreichen haben wir zunächst ein CoB/Pt Schichtsystem entwickelt, das starke senkrechte magnetische Anisotropie mit einer besonders geringen Rauigkeit der Energielandschaft verbindet. Diese Eigenschaften sind für das repetitive dynamische Abbildungsverfahren unerlässlich. In einem zweiten Schritt haben wir das Probendesign optimiert und so weiterentwickelt, dass eine Beobachtung der Skyrmionenbewegung mit einer Auflösung von besser als 3 nm möglich wurde. Aufgrund dieser Verbesserungen ist es uns gelungen, die Trajektorie eines Skyrmionen aufzuzeichnen. Diese Bewegung ist eine Superposition von zwei Drehbewegungen, einer im Uhrzeigersinn und einer gegen läufigen. Aus der Existenz dieser zwei Moden lässt sich schließen, dass Skyrmionen träge Quasiteilchen sind, und aus den Frequenzen können wir einen Wert für die träge Masse ableiten. Es stellt sich heraus, dass die Masse von Skyrmion fünfmal größer ist als von existierenden Theorien vorhergesagt. Die Masse wird folglich durch einen neuartigen Mechanismus bestimmt, der sich aus der räumlichen Beschränkung der Skyrmionen ergibt, welche sich direkt aus der Topologie bleitenrnlässt.