6 resultados para the Fuzzy Colour Segmentation Algorithm
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Atmosphärische Partikel beeinflussen das Klima durch Prozesse wie Streuung, Reflexion und Absorption. Zusätzlich fungiert ein Teil der Aerosolpartikel als Wolkenkondensationskeime (CCN), die sich auf die optischen Eigenschaften sowie die Rückstreukraft der Wolken und folglich den Strahlungshaushalt auswirken. Ob ein Aerosolpartikel Eigenschaften eines Wolkenkondensationskeims aufweist, ist vor allem von der Partikelgröße sowie der chemischen Zusammensetzung abhängig. Daher wurde die Methode der Einzelpartikel-Laserablations-Massenspektrometrie angewandt, die eine größenaufgelöste chemische Analyse von Einzelpartikeln erlaubt und zum Verständnis der ablaufenden multiphasenchemischen Prozesse innerhalb der Wolke beitragen soll.rnIm Rahmen dieser Arbeit wurde zur Charakterisierung von atmosphärischem Aerosol sowie von Wolkenresidualpartikel das Einzelpartikel-Massenspektrometer ALABAMA (Aircraft-based Laser Ablation Aerosol Mass Spectrometer) verwendet. Zusätzlich wurde zur Analyse der Partikelgröße sowie der Anzahlkonzentration ein optischer Partikelzähler betrieben. rnZur Bestimmung einer geeigneten Auswertemethode, die die Einzelpartikelmassenspektren automatisch in Gruppen ähnlich aussehender Spektren sortieren soll, wurden die beiden Algorithmen k-means und fuzzy c-means auf ihrer Richtigkeit überprüft. Es stellte sich heraus, dass beide Algorithmen keine fehlerfreien Ergebnisse lieferten, was u.a. von den Startbedingungen abhängig ist. Der fuzzy c-means lieferte jedoch zuverlässigere Ergebnisse. Darüber hinaus wurden die Massenspektren anhand auftretender charakteristischer chemischer Merkmale (Nitrat, Sulfat, Metalle) analysiert.rnIm Herbst 2010 fand die Feldkampagne HCCT (Hill Cap Cloud Thuringia) im Thüringer Wald statt, bei der die Veränderung von Aerosolpartikeln beim Passieren einer orographischen Wolke sowie ablaufende Prozesse innerhalb der Wolke untersucht wurden. Ein Vergleich der chemischen Zusammensetzung von Hintergrundaerosol und Wolkenresidualpartikeln zeigte, dass die relativen Anteile von Massenspektren der Partikeltypen Ruß und Amine für Wolkenresidualpartikel erhöht waren. Dies lässt sich durch eine gute CCN-Aktivität der intern gemischten Rußpartikel mit Nitrat und Sulfat bzw. auf einen begünstigten Übergang der Aminverbindungen aus der Gas- in die Partikelphase bei hohen relativen Luftfeuchten und tiefen Temperaturen erklären. Darüber hinaus stellte sich heraus, dass bereits mehr als 99% der Partikel des Hintergrundaerosols intern mit Nitrat und/oder Sulfat gemischt waren. Eine detaillierte Analyse des Mischungszustands der Aerosolpartikel zeigte, dass sich sowohl der Nitratgehalt als auch der Sulfatgehalt der Partikel beim Passieren der Wolke erhöhte. rn
Resumo:
Data sets describing the state of the earth's atmosphere are of great importance in the atmospheric sciences. Over the last decades, the quality and sheer amount of the available data increased significantly, resulting in a rising demand for new tools capable of handling and analysing these large, multidimensional sets of atmospheric data. The interdisciplinary work presented in this thesis covers the development and the application of practical software tools and efficient algorithms from the field of computer science, aiming at the goal of enabling atmospheric scientists to analyse and to gain new insights from these large data sets. For this purpose, our tools combine novel techniques with well-established methods from different areas such as scientific visualization and data segmentation. In this thesis, three practical tools are presented. Two of these tools are software systems (Insight and IWAL) for different types of processing and interactive visualization of data, the third tool is an efficient algorithm for data segmentation implemented as part of Insight.Insight is a toolkit for the interactive, three-dimensional visualization and processing of large sets of atmospheric data, originally developed as a testing environment for the novel segmentation algorithm. It provides a dynamic system for combining at runtime data from different sources, a variety of different data processing algorithms, and several visualization techniques. Its modular architecture and flexible scripting support led to additional applications of the software, from which two examples are presented: the usage of Insight as a WMS (web map service) server, and the automatic production of a sequence of images for the visualization of cyclone simulations. The core application of Insight is the provision of the novel segmentation algorithm for the efficient detection and tracking of 3D features in large sets of atmospheric data, as well as for the precise localization of the occurring genesis, lysis, merging and splitting events. Data segmentation usually leads to a significant reduction of the size of the considered data. This enables a practical visualization of the data, statistical analyses of the features and their events, and the manual or automatic detection of interesting situations for subsequent detailed investigation. The concepts of the novel algorithm, its technical realization, and several extensions for avoiding under- and over-segmentation are discussed. As example applications, this thesis covers the setup and the results of the segmentation of upper-tropospheric jet streams and cyclones as full 3D objects. Finally, IWAL is presented, which is a web application for providing an easy interactive access to meteorological data visualizations, primarily aimed at students. As a web application, the needs to retrieve all input data sets and to install and handle complex visualization tools on a local machine are avoided. The main challenge in the provision of customizable visualizations to large numbers of simultaneous users was to find an acceptable trade-off between the available visualization options and the performance of the application. Besides the implementational details, benchmarks and the results of a user survey are presented.
Resumo:
Except the article forming the main content most HTML documents on the WWW contain additional contents such as navigation menus, design elements or commercial banners. In the context of several applications it is necessary to draw the distinction between main and additional content automatically. Content extraction and template detection are the two approaches to solve this task. This thesis gives an extensive overview of existing algorithms from both areas. It contributes an objective way to measure and evaluate the performance of content extraction algorithms under different aspects. These evaluation measures allow to draw the first objective comparison of existing extraction solutions. The newly introduced content code blurring algorithm overcomes several drawbacks of previous approaches and proves to be the best content extraction algorithm at the moment. An analysis of methods to cluster web documents according to their underlying templates is the third major contribution of this thesis. In combination with a localised crawling process this clustering analysis can be used to automatically create sets of training documents for template detection algorithms. As the whole process can be automated it allows to perform template detection on a single document, thereby combining the advantages of single and multi document algorithms.
Resumo:
Flowers attract honeybees using colour and scent signals. Bimodality (having both scent and colour) in flowers leads to increased visitation rates, but how the signals influence each other in a foraging situation is still quite controversial. We studied four basic questions: When faced with conflicting scent and colour information, will bees choose by scent and ignore the “wrong” colour, or vice versa? To get to the bottom of this question, we trained bees on scent-colour combination AX (rewarded) versus BY (unrewarded) and tested them on AY (previously rewarded colour and unrewarded scent) versus BX (previously rewarded scent and unrewarded colour). It turned out that the result depends on stimulus quality: if the colours are very similar (unsaturated blue and blue-green), bees choose by scent. If they are very different (saturated blue and yellow), bees choose by colour. We used the same scents, lavender and rosemary, in both cases. Our second question was: Are individual bees hardwired to use colour and ignore scent (or vice versa), or can this behaviour be modified, depending on which cue is more readily available in the current foraging context? To study this question, we picked colour-preferring bees and gave them extra training on scent-only stimuli. Afterwards, we tested if their preference had changed, and if they still remembered the scent stimulus they had originally used as their main cue. We came to the conclusion that a colour preference can be reversed through scent-only training. We also gave scent-preferring bees extra training on colour-only stimuli, and tested for a change in their preference. The number of animals tested was too small for statistical tests (n = 4), but a common tendency suggested that colour-only training leads to a preference for colour. A preference to forage by a certain sensory modality therefore appears to be not fixed but flexible, and adapted to the bee’s surroundings. Our third question was: Do bees learn bimodal stimuli as the sum of their parts (elemental learning), or as a new stimulus which is different from the sum of the components’ parts (configural learning)? We trained bees on bimodal stimuli, then tested them on the colour components only, and the scent components only. We performed this experiment with a similar colour set (unsaturated blue and blue-green, as above), and a very different colour set (saturated blue and yellow), but used lavender and rosemary for scent stimuli in both cases. Our experiment yielded unexpected results: with the different colours, the results were best explained by elemental learning, but with the similar colour set, bees exhibited configural learning. Still, their memory of the bimodal compound was excellent. Finally, we looked at reverse-learning. We reverse-trained bees with bimodal stimuli to find out whether bimodality leads to better reverse-learning compared to monomodal stimuli. We trained bees on AX (rewarded) versus BY (unrewarded), then on AX (unrewarded) versus BY (rewarded), and finally on AX (rewarded) and BY (unrewarded) again. We performed this experiment with both colour sets, always using the same two scents (lavender and rosemary). It turned out that bimodality does not help bees “see the pattern” and anticipate the switch. Generally, bees trained on the different colour set performed better than bees trained on the similar colour set, indicating that stimulus salience influences reverse-learning.
Resumo:
Wir betrachten Systeme von endlich vielen Partikeln, wobei die Partikel sich unabhängig voneinander gemäß eindimensionaler Diffusionen [dX_t = b(X_t),dt + sigma(X_t),dW_t] bewegen. Die Partikel sterben mit positionsabhängigen Raten und hinterlassen eine zufällige Anzahl an Nachkommen, die sich gemäß eines Übergangskerns im Raum verteilen. Zudem immigrieren neue Partikel mit einer konstanten Rate. Ein Prozess mit diesen Eigenschaften wird Verzweigungsprozess mit Immigration genannt. Beobachten wir einen solchen Prozess zu diskreten Zeitpunkten, so ist zunächst nicht offensichtlich, welche diskret beobachteten Punkte zu welchem Pfad gehören. Daher entwickeln wir einen Algorithmus, um den zugrundeliegenden Pfad zu rekonstruieren. Mit Hilfe dieses Algorithmus konstruieren wir einen nichtparametrischen Schätzer für den quadrierten Diffusionskoeffizienten $sigma^2(cdot),$ wobei die Konstruktion im Wesentlichen auf dem Auffüllen eines klassischen Regressionsschemas beruht. Wir beweisen Konsistenz und einen zentralen Grenzwertsatz.
Resumo:
Zeitreihen sind allgegenwärtig. Die Erfassung und Verarbeitung kontinuierlich gemessener Daten ist in allen Bereichen der Naturwissenschaften, Medizin und Finanzwelt vertreten. Das enorme Anwachsen aufgezeichneter Datenmengen, sei es durch automatisierte Monitoring-Systeme oder integrierte Sensoren, bedarf außerordentlich schneller Algorithmen in Theorie und Praxis. Infolgedessen beschäftigt sich diese Arbeit mit der effizienten Berechnung von Teilsequenzalignments. Komplexe Algorithmen wie z.B. Anomaliedetektion, Motivfabfrage oder die unüberwachte Extraktion von prototypischen Bausteinen in Zeitreihen machen exzessiven Gebrauch von diesen Alignments. Darin begründet sich der Bedarf nach schnellen Implementierungen. Diese Arbeit untergliedert sich in drei Ansätze, die sich dieser Herausforderung widmen. Das umfasst vier Alignierungsalgorithmen und ihre Parallelisierung auf CUDA-fähiger Hardware, einen Algorithmus zur Segmentierung von Datenströmen und eine einheitliche Behandlung von Liegruppen-wertigen Zeitreihen.rnrnDer erste Beitrag ist eine vollständige CUDA-Portierung der UCR-Suite, die weltführende Implementierung von Teilsequenzalignierung. Das umfasst ein neues Berechnungsschema zur Ermittlung lokaler Alignierungsgüten unter Verwendung z-normierten euklidischen Abstands, welches auf jeder parallelen Hardware mit Unterstützung für schnelle Fouriertransformation einsetzbar ist. Des Weiteren geben wir eine SIMT-verträgliche Umsetzung der Lower-Bound-Kaskade der UCR-Suite zur effizienten Berechnung lokaler Alignierungsgüten unter Dynamic Time Warping an. Beide CUDA-Implementierungen ermöglichen eine um ein bis zwei Größenordnungen schnellere Berechnung als etablierte Methoden.rnrnAls zweites untersuchen wir zwei Linearzeit-Approximierungen für das elastische Alignment von Teilsequenzen. Auf der einen Seite behandeln wir ein SIMT-verträgliches Relaxierungschema für Greedy DTW und seine effiziente CUDA-Parallelisierung. Auf der anderen Seite führen wir ein neues lokales Abstandsmaß ein, den Gliding Elastic Match (GEM), welches mit der gleichen asymptotischen Zeitkomplexität wie Greedy DTW berechnet werden kann, jedoch eine vollständige Relaxierung der Penalty-Matrix bietet. Weitere Verbesserungen umfassen Invarianz gegen Trends auf der Messachse und uniforme Skalierung auf der Zeitachse. Des Weiteren wird eine Erweiterung von GEM zur Multi-Shape-Segmentierung diskutiert und auf Bewegungsdaten evaluiert. Beide CUDA-Parallelisierung verzeichnen Laufzeitverbesserungen um bis zu zwei Größenordnungen.rnrnDie Behandlung von Zeitreihen beschränkt sich in der Literatur in der Regel auf reellwertige Messdaten. Der dritte Beitrag umfasst eine einheitliche Methode zur Behandlung von Liegruppen-wertigen Zeitreihen. Darauf aufbauend werden Distanzmaße auf der Rotationsgruppe SO(3) und auf der euklidischen Gruppe SE(3) behandelt. Des Weiteren werden speichereffiziente Darstellungen und gruppenkompatible Erweiterungen elastischer Maße diskutiert.