2 resultados para teachers educators kindergarten - power relationships conflict - established and outsiders

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Homo-oligofluorenes (OFn), polyfluorenes (PF2/6) and oligofluorenes with one fluorenenone group in the center (OFnK) were synthesized. They were used as model compounds to understand of the structure-property relationships of polyfluorenes and the origin of the green emission in the photoluminescence (after photooxidation of the PFs) and the electroluminescence (EL) spectra. The electronic, electrochemical properties, thermal behavior, supramolecular self-assembly, and photophysical properties of OFn, PF2/6 and OFnK were investigated. Oligofluorenes with 2-ethylhexyl side chain (OF2-OF7) from the dimer up to the heptamer were prepared by a series of stepwise transition metal mediated Suzuki and Yamamoto coupling reactions. Polyfluorene was synthesized by Yamamoto coupling of 2,7-dibromo-9,9-bis(2-ethylhexyl)fluorene. Oligofluorenes with one fluorenone group in the center (OF3K, OF5K, OF7K) were prepared by Suzuki coupling between the monoboronic fluorenyl monomer, dimer, trimer and 2, 7-dibromofluorenone. The electrochemical and electronic properties of homo-oligofluorenes (OFn) were systematically studied by several combined techniques such as cyclic voltammetry, differential pulse voltammetry, UV-vis absorption spectroscopy, steady and time-resolved fluorescence spectroscopy. It was found that the oligofluorenes behave like classical conjugated oligomers, i.e., with the increase of the chain-length, the corresponding oxidation potential, the absorption and emission maximum, ionization potential, electron affinity, band gap and the photoluminescence lifetime displayed a very good linear relation with the reciprocal number of the fluorene units (1/n). The extrapolation of these linear relations to infinite chain length predicted the electrochemical and electronic properties of the corresponding polyfluorenes. The thermal behavior, single-crystal structure and supramolecular packing, alignment properties, and molecular dynamics of the homo-oligofluorenes (OFn) up to the polymer were studied using techniques such as TGA, DSC, WAXS, POM and DS. The OFn from tetramer to heptamer show a smectic liquid crystalline phase with clearly defined isotropization temperature. The oligomers do show a glass transition which exhibits n-1 dependence and allows extrapolation to a hypothetical glass transition of the polymer at around 64 C. A smectic packing and helix-like conformation for the oligofluorenes from tetramer to heptamer was supported by WAXS experiments, simulation, and single-crystal structure of some oligofluorene derivatives. Oligofluorenes were aligned more easily than the corresponding polymer, and the alignability increased with the molecular length from tetramer to heptamer. The molecular dynamics in a series of oligofluorenes up to the polymer was studied using dielectric spectroscopy. The photophysical properties of OFn and PF2/6 were investigated by the steady-state spectra (UV-vis absorption and fluorescence spectra) and time-resolved fluorescence spectra both in solution and thin film. The time-resolved fluorescence spectra of the oligofluorenes were measured by streak camera and gate detection technique. The lifetime of the oligofluorenes decreased with the extension of the chain-length. No green emission was observed in CW, prompt and delayed fluorescence for oligofluorenes in m-THF and film at RT and 77K. Phosphorescence was observed for oligofluorenes in frozen dilute m-THF solution at 77K and its lifetime increased with length of oligofluorenes. A linear relation was obtained for triplet energy and singlet energy as a function of the reciprocal degree of polymerization, and the singlet-triplet energy gap (S1-T1) was found to decrease with the increase of degree of polymerization. Oligofluorenes with one fluorenone unit at the center were used as model compounds to understand the origin of the low-energy (green) emission band in the photoluminescence and electroluminescence spectra of polyfluorenes. Their electrochemical properties were investigated by CV, and the ionization potential (Ip) and electron affinity (Ea) were calculated from the onset of oxidation and reduction of OFnK. The photophysical properties of OFnK were studied in dilute solution and thin film by steady-state spectra and time-resolved fluorescence spectra. A strong green emission accompanied with a weak blue emission were obtained in solution and only green emission was observed on film. The strong green emission of OFnK suggested that rapid energy transfer takes place from higher energy sites (fluorene segments) to lower energy sites (fluorenone unit) prior to the radiative decay of the excited species. The fluorescence spectra of OFnK also showed solvatochromism. Monoexponential decay behaviour was observed by time-resolved fluorescence measurements. In addition, the site-selective excitation and concentration dependence of the fluorescence spectra were investigated. The ratio of green and blue emission band intensities increases with the increase of the concentration. The observed strong concentration dependence of the green emission band in solution suggests that increased interchain interactions among the fluorenone-containing oligofluorene chain enhanced the emission from the fluorenone defects at higher concentration. On the other hand, the mono-exponential decay behaviour and power dependence were not influenced significantly by the concentration. We have ruled out the possibility that the green emission band originates from aggregates or excimer formation. Energy transfer was further investigated using a model system of a polyfluorene doped by OFnK. Frster-type energy transfer took place from PF2/6 to OFnK, and the energy transfer efficiency increased with increasing of the concentration of OFnK. Efficient funneling of excitation energy from the high-energy fluorene segments to the low-energy fluorenone defects results from energy migration by hopping of excitations along a single polymer chain until they are trapped on the fluorenone defects on that chain or transferred onto neighbouring chains by Frster-type interchain energy transfer process. These results imply that the red-shifted emission in polyfluorenes can originate from (usually undesirable) keto groups at the bridging carbon atoms-especially if the samples have been subject to photo- or electro-oxidation or if fluorenone units are present due to an improper purification of the monomers prior to polymerization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human cytochrome P450 3A4 (CYP3A4), the predominant but variably expressed cytochrome P450 in adult liver and small intestine is involved in the metabolism of over 50% of currently used drugs. Its paralog CYP3A5 plays a crucial role in the disposition of several drugs with low therapeutic index, including tacrolimus. Limited information is available for the CYP3A5 transcriptional regulation and its induction by xenobiotics remains controversial. In the first part of this study, we analysed the CYP3A5 transcriptional regulation and its induction by xenobiotics in vivo using transgenic mice. To this end, two transgenic strains were established by pronuclear injection of a plasmid, expressing firefly luciferase driven by a 6.2 kb of the human CYP3A5 promoter. A detailed analysis of both strains shows a tissue distribution largely reflecting that of CYP3A5 transcripts in humans. Thus, the highest luciferase activity was detected in the small intestine, followed by oesophagus, testis, lung, adrenal gland, ovary, prostate and kidney. However, no activity was observed in the liver. CYP3A5-luc transgenic mice were similarly induced in both sexes with either PCN or TCPOBOP in small intestine in a dose-dependent manner. Thus, the 6.2 kb upstream promoter of CYP3A5 mediates the broad tissue activity in transgenic mice. CYP3A5 promoter is inducible in the small intestine in vivo, which may contribute to the variable expression of CYP3A in this organ. rnThe hepato-intestinal level of the detoxifying oxidases CYP3A4 and CYP3A5 is adjusted to the xenobiotic exposure mainly via the xenosensor and transcriptional factor PXR. CYP3A5 is additionally expressed in several other organs lacking PXR, including kidney. In the second part of this study, we investigated the mechanism of the differential expression of CYP3A5 and CYP3A4 and its evolutionary origin using renal and intestinal cells, and comparative genomics. For this examination, we established a two-cell line models reflecting the expression relationships of CYP3A4 and CYP3A5 in the kidney and small intestine in vivo. Our data demonstrate that the CYP3A5 expression in renal cells was enabled by the loss of a suppressing Yin Yang 1 (YY1)-binding site from the CYP3A5 promoter. This allowed for a renal CYP3A5 expression in a PXR-independent manner. The YY1 element is retained in the CYP3A4 gene, leading to its suppression, perhaps via interference with the NF1 activity in renal cells. In intestinal cells, the inhibition of CYP3A4 expression by YY1 is abrogated by a combined activating effect of PXR and NF1 acting on their respective response elements located adjacent to the YY1-binding site on CYP3A4 proximal promoter. CYP3A4 expression is further facilitated by a point mutation attenuating the suppressing effect of YY1 binding site. The differential expression of CYP3A4 and CYP3A5 in these organs results from the loss of the YY1 binding element from the CYP3A5 promoter, acting in concert with the differential organ expression of PXR, and with the higher accumulation of PXR response elements in CYP3A4. rn