1 resultado para symmetric potential
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
This thesis presents the versatile synthesis and self-organization of C3-symmetric discotic nanographene molecules as well as their potential applications as materials in molecular electronics. The details can be described as follows: 1) A novel synthetic strategy towards properly designed C3 symmetric 1,3,5-tris-2’arylbenzene precursors has been developed. After the final planarization by treatment with FeCl3 under mild conditions, for the first time, it became possible to access a variety of new C3-symmetric hexa-peri-hexabenzocoronenes (HBCs) and a series of triangle-shaped nanographenes. D3 symmetric HBC with three alkyl substituents and C2 symmetric HBC with two alkyl substituents were synthesized and found to show the surprising decrease of isotropic points., the self-assembly at the liquid-solid interface displayed a unique zigzag and flower patterns. 2) Triangle-shaped discotics revealed a unique self-assembly behavior in solution, solid state as well as at the solution-substrate interface. A mesophase stability over the broad temperature range with helical supramoelcular arrangement were observed in the bulk state. The honeycomb pattern as the result of novel self-assembly was presented. Triangle-shaped discotics with swallow alkyl tails were fabricated into photovoltaic devices, the supramolecular arrangement upon thermal treatment was found to play a key role in the improvement of solar efficiency. 3) A novel class of C3 symmetric HBCs with alternating polar/apolar substituents was synthesized. Their peculiar self-assembly in solution, in the bulk and on the surface were investigated by NMR techniques, X-ray diffraction as well as different electron microscope techniques. 4) A novel concept for manipulating the intracolumnar stacking of discotics and thus for controlling the helical pitch was presented. A unique staggered stacking in the column was achieved for the first time. Theoretical simulations confirmed this self-organization and predicted that this packing should show the highest charge carrier mobility for all discotics.