2 resultados para surf oholak

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

10.00% 10.00%

Publicador:

Resumo:

CONCLUSIONS The focus of this work was the investigation ofanomalies in Tg and dynamics at polymer surfaces. Thethermally induced decay of hot-embossed polymer gratings isstudied using laser-diffraction and atomic force microscopy(AFM). Monodisperse PMMA and PS are selected in the Mwranges of 4.2 to 65.0 kg/mol and 3.47 to 65.0 kg/mol,respectively. Two different modes of measurement were used:the one mode uses temperature ramps to obtain an estimate ofthe near-surface glass temperature, Tdec,0; the other modeinvestigates the dynamics at a constant temperature aboveTg. The temperature-ramp experiments reveal Tdec,0 valuesvery close to the Tg,bulk values, as determined bydifferential scanning calorimetry (DSC). The PMMA of65.0 kg/mol shows a decreased value of Tg, while the PS samples of 3.47 and 10.3 kg/mol (Mwsurface Tg. The transition widthbetween the onset of an amplitude reduction and a finalstate is smaller in the case of PS than in the case of PMMA.This suggests a higher degree of cooperation between thepolymer chains for PMMA than for PS chains even near thesurface. A reduction of the investigated near-surface region byusing smaller grating constants and AFM did not show achange in the near-surface Tdec,0. Decay experiments were performed at a variety ofconstant temperatures. Master plots are produced by shifting the decay curves, on the logarithmic time scale,with respect to a reference curve at Tref. From thisprocedure shift factors were extracted. An Arrhenius analysis of the shift factors reveals adecreasing non-Arrhenius (fragile) behavior with molecular weight for PMMA. PS is fragile for all Mw asexpected for linear polymers. Non-Arrhenius behavior allowsone to fit the shift factors to the William-Landel-Ferry(WLF) equation. The WLF parameters for the varying molecular weights ofPMMA and PS were extracted and compared to the values frombulk rheology measurements. Assuming cg1=16+/-2 at Tg, assuggested by Angell, the glass temperature was determinedfrom the dynamic decay experiments. Within the experimentalerrors, the values for Tg,surf(c1=16) and T_g,bulk(c1=16)tend to be smaller than Tdec,0 and Tg,bulk fromtemperature-ramp and DSC measurements, but confirm thecourse of the values with increasing Mw. The comparison of the fragilities (temperaturedependence of the polymer properties at Tg) near the surfaceand in the bulk shows a higher fragility for PS near thesurface, a lower one for PMMA with molecular weights of 4.2and 65.0 kg/mol. The different surface behavior of PS istraced back to a lower degree of cooperation and a largerfree volume fraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aerosolpartikel beeinflussen das Klima durch Streuung und Absorption von Strahlung sowie als Nukleations-Kerne für Wolkentröpfchen und Eiskristalle. Darüber hinaus haben Aerosole einen starken Einfluss auf die Luftverschmutzung und die öffentliche Gesundheit. Gas-Partikel-Wechselwirkunge sind wichtige Prozesse, weil sie die physikalischen und chemischen Eigenschaften von Aerosolen wie Toxizität, Reaktivität, Hygroskopizität und optische Eigenschaften beeinflussen. Durch einen Mangel an experimentellen Daten und universellen Modellformalismen sind jedoch die Mechanismen und die Kinetik der Gasaufnahme und der chemischen Transformation organischer Aerosolpartikel unzureichend erfasst. Sowohl die chemische Transformation als auch die negativen gesundheitlichen Auswirkungen von toxischen und allergenen Aerosolpartikeln, wie Ruß, polyzyklische aromatische Kohlenwasserstoffe (PAK) und Proteine, sind bislang nicht gut verstanden.rn Kinetische Fluss-Modelle für Aerosoloberflächen- und Partikelbulk-Chemie wurden auf Basis des Pöschl-Rudich-Ammann-Formalismus für Gas-Partikel-Wechselwirkungen entwickelt. Zunächst wurde das kinetische Doppelschicht-Oberflächenmodell K2-SURF entwickelt, welches den Abbau von PAK auf Aerosolpartikeln in Gegenwart von Ozon, Stickstoffdioxid, Wasserdampf, Hydroxyl- und Nitrat-Radikalen beschreibt. Kompetitive Adsorption und chemische Transformation der Oberfläche führen zu einer stark nicht-linearen Abhängigkeit der Ozon-Aufnahme bezüglich Gaszusammensetzung. Unter atmosphärischen Bedingungen reicht die chemische Lebensdauer von PAK von wenigen Minuten auf Ruß, über mehrere Stunden auf organischen und anorganischen Feststoffen bis hin zu Tagen auf flüssigen Partikeln. rn Anschließend wurde das kinetische Mehrschichtenmodell KM-SUB entwickelt um die chemische Transformation organischer Aerosolpartikel zu beschreiben. KM-SUB ist in der Lage, Transportprozesse und chemische Reaktionen an der Oberfläche und im Bulk von Aerosol-partikeln explizit aufzulösen. Es erforder im Gegensatz zu früheren Modellen keine vereinfachenden Annahmen über stationäre Zustände und radiale Durchmischung. In Kombination mit Literaturdaten und neuen experimentellen Ergebnissen wurde KM-SUB eingesetzt, um die Effekte von Grenzflächen- und Bulk-Transportprozessen auf die Ozonolyse und Nitrierung von Protein-Makromolekülen, Ölsäure, und verwandten organischen Ver¬bin-dungen aufzuklären. Die in dieser Studie entwickelten kinetischen Modelle sollen als Basis für die Entwicklung eines detaillierten Mechanismus für Aerosolchemie dienen sowie für das Herleiten von vereinfachten, jedoch realistischen Parametrisierungen für großskalige globale Atmosphären- und Klima-Modelle. rn Die in dieser Studie durchgeführten Experimente und Modellrechnungen liefern Beweise für die Bildung langlebiger reaktiver Sauerstoff-Intermediate (ROI) in der heterogenen Reaktion von Ozon mit Aerosolpartikeln. Die chemische Lebensdauer dieser Zwischenformen beträgt mehr als 100 s, deutlich länger als die Oberflächen-Verweilzeit von molekularem O3 (~10-9 s). Die ROIs erklären scheinbare Diskrepanzen zwischen früheren quantenmechanischen Berechnungen und kinetischen Experimenten. Sie spielen eine Schlüsselrolle in der chemischen Transformation sowie in den negativen Gesundheitseffekten von toxischen und allergenen Feinstaubkomponenten, wie Ruß, PAK und Proteine. ROIs sind vermutlich auch an der Zersetzung von Ozon auf mineralischem Staub und an der Bildung sowie am Wachstum von sekundären organischen Aerosolen beteiligt. Darüber hinaus bilden ROIs eine Verbindung zwischen atmosphärischen und biosphärischen Mehrphasenprozessen (chemische und biologische Alterung).rn Organische Verbindungen können als amorpher Feststoff oder in einem halbfesten Zustand vorliegen, der die Geschwindigkeit von heterogenen Reaktionenen und Mehrphasenprozessen in Aerosolen beeinflusst. Strömungsrohr-Experimente zeigen, dass die Ozonaufnahme und die oxidative Alterung von amorphen Proteinen durch Bulk-Diffusion kinetisch limitiert sind. Die reaktive Gasaufnahme zeigt eine deutliche Zunahme mit zunehmender Luftfeuchte, was durch eine Verringerung der Viskosität zu erklären ist, bedingt durch einen Phasenübergang der amorphen organischen Matrix von einem glasartigen zu einem halbfesten Zustand (feuchtigkeitsinduzierter Phasenübergang). Die chemische Lebensdauer reaktiver Verbindungen in organischen Partikeln kann von Sekunden bis zu Tagen ansteigen, da die Diffusionsrate in der halbfesten Phase bei niedriger Temperatur oder geringer Luftfeuchte um Größenordnungen absinken kann. Die Ergebnisse dieser Studie zeigen wie halbfeste Phasen die Auswirkung organischeer Aerosole auf Luftqualität, Gesundheit und Klima beeinflussen können. rn