5 resultados para split luciferase complementation assay
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Intermediärfilamente (IFs) sind neben Mikrotubuli und Aktinfilamenten die dritte filamentäre Komponente des Zytoskeletts. Sie wirken als mechanische Stabilisatoren, sind außerdem an Zelldifferenzierung, Proliferation und Apoptose beteiligt und tragen zu Zellpolarität bei. IFs sind dynamische Strukturen, die zelltypspezifisch in unterschiedlichen Anordnungen und Abundanzen vorkommen und von Signalkaskaden beeinflusst werden. Die zugrundeliegenden molekularen Mechanismen dieser fein abgestimmten Prozesse sind weitgehend unbekannt. In dieser Arbeit sollte deswegen ein Tiermodell entwickelt werden, um Regulatoren der IF-(Netzwerk)-Organisation in vivo zu untersuchen und zu identifizieren. Dazu wurde C. elegans ausgewählt, da es sich hierbei um einen genetisch gut charakterisierten und leicht manipulierbaren Organismus handelt, in dessen Genom elf Gene für zytoplasmatische IFs kodieren. Zunächst wurden stabil transgene C. elegans-Linien generiert, die fluoreszierende IFs exprimieren. Es konnte gezeigt werden, dass das darmspezifische IFB-2::CFP im Bereich des apikalen Junktionskomplex verankert ist und nahezu vollständig im subapikalen Terminalgeflecht der Enterozyten lokalisiert, das als Teil der endotube besonders stabil und widerstandsfähig ist. Wenn diese Tiere mit dsRNA gegen das ebenfalls im Terminalgeflecht exprimierte IF ifc-2 behandelt wurden, entwickelten sich blasenförmige Ausstülpungen des Darmlumens, die auf eine Schwächung der rigiden und formgebenden endotube hinwiesen und damit einen direkten in vivo-Beweis für die stressprotektive Funktion des intestinalen IF-Netzwerks lieferten. Die leichte Detektierbarkeit des IFB-2::CFP-Musters wurde in einem optischen Screen ausgenutzt, bei dem nach chemischer Mutagenese nach Veränderungen im IF-Muster gefahndet wurde. Hierbei wurden drei Mutanten isoliert. In Komplementationsanalysen stellte sich heraus, dass es sich in zwei Fällen um Allele desselben Gens handelt. Die Identifizierung der betroffenen Gene gelang durch eine PCR-basierte Kartierung von single nucleotide polymorphisms nach Verpaarung mit dem Hawaii-Stamm (snp-mapping) und anschließender RNAi-Analyse der Einzelgene in den identifizierten Chromosomenabschnitten. Im einen Fall handelte es sich um das sma-5-Gen, einer Serin/Threonin-Kinase mit Homologie zu den MAP-Kinasen MAPK7/ERK5 der Säuger. Hier wurden, ebenso wie beim ifc-2 (RNAi)-Phänotyp, progressive blasenförmige Ausstülpungen des Darmlumens beobachtet. Die beiden anderen Allele tragen Mutationen in einem bisher nicht näher charakterisierten Gen. In diesen Würmern kommt es zu einem vollständigen Auflösung des IFB-2::CFP-Netzwerks mit prominenten Akkumulationen um die apikalen Junktionen. Das Darmlumen ist stellenweise geweitet und das elektronendichte Terminalgeflecht fehlt fast vollständig, die Integrität des Darmepithels ist jedoch nicht kompromittiert. Die anderen IFs des Terminalgeflechts sind ebenfalls fehlverteilt, und die intestinale Expression von Aktin ist stark reduziert. Expressionskonstrukte des Gens zeigten weiterhin, dass es darmspezifisch synthetisiert wird und mit den IFs im Terminalgeflecht kolokalisiert. Das Protein ist, ähnlich wie das IF-assoziierte Filaggrin der Säuger ausgesprochen histidinreich. Es enthält außerdem eine Prolin-reiche Domäne, die Teil einer potentiellen Aktin-Bindedomäne ist. Auf Grund all dieser Eigenschaften wird die Bezeichnung IFO-1 (intermediate filament organizer) für das neue Protein vorgeschlagen, das möglicherweise als struktureller Zytoskelett-Linker wirkt. Die vorgestellten Ergebnisse untermauern die Bedeutung von C. elegans für die Identifizierung von Faktoren, die IF-Netzwerke regulieren, und die Möglichkeit, Defekte im lebenden Gesamtorganismus zu bestimmen.
Resumo:
The horizontal and vertical system neurons (HS and VS cells) are part of a conserved set of lobula plate giant neurons (LPGNs) in the optic lobes of the adult brain. Structure and physiology of these cells are well known, predominantly from studies in larger Dipteran flies. Our knowledge about the ontogeny of these cells is limited and stems predominantly from laser ablation studies in larvae of the house fly Musca domestica. These studies suggested that the HS and VS cells stem from a single precursor, which, at least in Musca, has not yet divided in the second larval instar. A regulatory mutation (In(1)omb[H31]) in the Drosophila gene optomotor-blind (omb) leads to the selective loss of the adult HS and VS cells. This mutation causes a transient reduction in omb expression in what appears to be the entire optic lobe anlage (OLA) late in embryogenesis. Here, I have reinitiated the laser approach with the goal of identifying the presumptive embryonic HS/VS precursor cell in Drosophila. The usefulness of the laser ablation approach which has not been applied, so far, to cells lying deep within the Drosophila embryo, was first tested on two well defined embryonic sensory structures, the olfactory antenno-maxillary complex (AMC) and the light-sensitive Bolwing´s organ (BO). In the case of the AMC, the efficiency of the ablation procedure was demonstrated with a behavioral assay. When both AMCs were ablated, the response to an attractive odour (n-butanol) was clearly reduced. Interestingly, the larvae were not completely unresponsive but had a delayed response kinetics, indicating the existence of a second odour system. BO will be a useful test system for the selectivity of laser ablation when used at higher spatial resolution. An omb-Gal4 enhancer trap line was used to visualize the embryonic OLA by GFP fluorescence. This fluorescence allowed to guide the laser beam to the relevant structure within the embryo. The success of the ablations was monitored in the adult brain via the enhancer trap insertion A122 which selectively visualizes the HS and VS cell bodies. Due to their tight clustering, individual cells could not be identified in the embryonic OLA by conventional fluorescence microscopy. Nonetheless, systematic ablation of subdomains of the OLA allowed to localize the presumptive HS/VS precursor to a small area within the OLA, encompassing around 10 cells. Future studies at higher resolution should be able to identify the precursor as (an) individual cell(s). Most known lethal omb alleles do not complement the HS/VS phenotype of the In(1)omb[H31] allele. This is the expected behaviour of null alleles. Two lethal omb alleles that had been isolated previously by non-complementation of the omb hypomorphic allele bifid, have been reported, however, to complement In(1)omb[H31]. This report was based on low resolution paraffin histology of adult heads. Four mutations from this mutagenesis were characterized here in more detail (l(1)omb[11], l(1)omb[12], l(1)omb[13], and l(1)omb[15]). Using A122 as marker for the adult HS and VS cells, I could show, that only l(1)omb[11] can partly complement the HS/VS cell phenotype of In(1)omb[H31]. In order to identify the molecular lesions in these mutants, the exons and exon/intron junctions were sequenced in PCR-amplified material from heterozygous flies. Only in two mutants could the molecular cause for loss of omb function be identified: in l(1)omb[13]), a missense mutation causes the exchange of a highly conserved residue within the DNA-binding T-domain; in l(1)omb[15]), a nonsense mutation causes a C-terminal truncation. In the other two mutants apparently regulatory regions or not yet identified alternative exons are affected. To see whether mutant OMB protein in the missense mutant l(1)omb[13] is affected in DNA binding, electrophoretic shift assays on wildtype and mutant T-domains were performed. They revealed that the mutant no longer is able to bind the consensus palindromic T-box element.
Resumo:
The amyloid precursor protein (APP) is a type I transmembrane glycoprotein, which resembles a cell surface receptor, comprising a large ectodomain, a single spanning transmembrane part and a short C-terminal, cytoplasmic domain. It belongs to a conserved gene family, with over 17 members, including also the two mammalian APP homologues proteins APLP1 and APLP2 („amyloid precursor like proteins“). APP is encoded by 19 exons, of which exons 7, 8, and 15 can be alternatively spliced to produce three major protein isoforms APP770, APP751 and APP695, reflecting the number of amino acids. The neuronal APP695 is the only isoform that lacks a Kunitz Protease Inhibitor (KPI) domain in its extracellular portion whereas the two larger, peripheral APP isoforms, contain the 57-amino-acid KPI insert. rnRecently, research effort has suggested that APP metabolism and function is thought to be influenced by homodimerization and that the oligomerization state of APP could also play a role in the pathology of Alzheimer's disease (AD), by regulating its processing and amyloid beta production. Several independent studies have shown that APP can form homodimers within the cell, driven by motifs present in the extracellular domain, as well as in the juxtamembrane (JM) and transmembrane (TM) regions of the molecule, whereby the exact molecular mechanism and the origin of dimer formation remains elusive. Therefore, we focused in our study on the actual subcellular origin of APP homodimerization within the cell, an underlying mechanism, and a possible impact on dimerization properties of its homologue APLP1. Furthermore, we analyzed homodimerization of various APP isoforms, in particular APP695, APP751 and APP770, which differ in the presence of a Kunitz-type protease inhibitor domain (KPI) in the extracellular region. In order to assess the cellular origin of dimerization under different cellular conditions, we established a mammalian cell culture model-system in CHO-K1 (chinese hamster ovary) cells, stably overexpressing human APP, harboring dilysine based organelle sorting motifs at the very C-terminus [KKAA-Endoplasmic Reticulum (ER); KKFF-Golgi]. In this study we show that APP exists as disulfide-bound, SDS-stable dimers, when it was retained in the ER, unlike when it progressed further to the cis-Golgi, due to the KKFF ER exit determinant. These stable APP complexes were isolated from cells, and analyzed by SDS–polyacrylamide gel electrophoresis under non-reducing conditions, whereas strong denaturing and reducing conditions completely converted those dimers to monomers. Our findings suggested that APP homodimer formation starts early in the secretory pathway and that the unique oxidizing environment of the ER likely promotes intermolecular disulfide bond formation between APP molecules. We particularly visualized APP dimerization employing a variety of biochemical experiments and investigated the origin of its generation by using a Bimolecular Fluorescence Complementation (BiFC) approach with split GFP-APP chimeras. Moreover, using N-terminal deletion constructs, we demonstrate that intermolecular disulfide linkage between cysteine residues, exclusively located in the extracellular E1 domain, represents another mechanism of how an APP sub-fraction can dimerize within the cell. Additionally, mutational studies revealed that cysteines at positions 98 and 105, embedded in the conserved loop region within the E1 domain, are critical for interchain disulfide bond formation. Using a pharmacological treatment approach, we show that once generated in the oxidative environment of the ER, APP dimers remain stably associated during transport, reaching the plasma membrane. In addition, we demonstrate that APP isoforms, encompassing the KPI domain, exhibit a strongly reduced ability to form cis-directed dimers in the ER, whereas trans-directed cell aggregation of Drosophila Schneider (S2)-cells was isoform independent, mediating cell-cell contacts. Thus, suggesting that steric properties of KPI-APP might be the cause for weaker cis-interaction in the ER, compared to APP695. Finally, we provide evidence that APP/APLP1 heterointeractions are likewise initiated in the ER, suggesting a similar mechanism for heterodimerization. Therefore, dynamic alterations of APP between monomeric, homodimeric, and possibly heterodimeric status could at least partially explain some of the variety in the physiological functions of APP.rn
Resumo:
Rupture forces of ligand-receptor interactions, such as proteins-proteins, proteins-cells, and cells-tissues, have been successfully measured by atomic force spectroscopy (AFS). For these measurements, the ligands and receptors were chemically modified so that they can be immobilized on the tip and on a substrate, respectively. The ligand interact the receptor when the tip approaches the substrate. This interaction can be studied by measuring rupture force upon retraction. However, this technique is not feasible for measurements involving small molecules, since they form only few H-bonds with their corresponding receptors. Modifying small molecules for immobilization on surfaces may block or change binding sites. Thus, recorded rupture forces might not reflect the full scope of the involved small ligand-receptor interactions.rnIn my thesis, a novel concept that allows measuring the rupture force of small involved ligand-receptor interactions and does not require molecular modification for immobilization was introduced. The rupture force of small ligand-receptor interaction is not directly measured but it can be determined from measurements in the presence and in the absence of the ligand. As a model system, the adenosine mono phosphate (AMP) and the aptamer that binds AMP were selected. The aptamer (receptor) is a single stranded DNA that can partially self-hybridize and form binding pockets for AMP molecules (ligands). The bonds between AMP and aptamer are provided by several H-bonds and pair stacking.rnIn the novel concept, the aptamer was split into two parts (oligo a and oligo b). One part was immobilized on the tip and the other one on the substrate. Approaching the tip to the substrate, oligo a and oligo b partially hybridized and the binding pockets were formed. After adding AMP into the buffer solution, the AMP bound in the pockets and additional H-bonds were formed. Upon retraction of the tip, the rupture force of the AMP-split aptamer complex was measured. In the presence of excess AMP, the rupture force increased by about 10 pN. rnThe dissociation constant of the AMP-split aptamer complex was measured on a single molecular level (~ 4 µM) by varying the AMP concentrations and measuring the rupture force at each concentration. Furthermore, the rupture force was amplified when more pockets were added to the split aptamer. rnIn the absence of AMP, the thermal off-rate was slightly reduced compared to that in the presence of AMP, indicating that the AMP stabilized the aptamer. The rupture forces at different loading rates did not follow the logarithmic fit which was usually used to describe the dependence of rupture forces at different loading rates of oligonucleotides. Two distinguished regimes at low and high loading rates were obtained. The two regimes were explained by a model in which the oligos located at the pockets were stretched at high loading rates. rnThe contribution of a single H-bond formed between the AMP molecule and the split aptamer was measured by reducing the binding groups of the AMP. The rupture forces reduce corresponding to the reduction of the binding groups. The phosphate group played the most important role in the formation of H-bond network between the AMP molecule and the split aptamer. rn
Resumo:
Unter der Bezeichnung Chronisch Entzündliche Darmerkrankungen (CED) werden zwei Erscheinungsformen, Colitis Ulcerosa (CU) und Morbus Crohn (MC) zusammengefasst. Das Leitsymptom von CED sind chronische Entzündungen des Magen-Darm-Trakts, insbesondere des terminalen Ileum und des Colons. Es wird angenommen, dass eine aberrante Immunantwort auf das intestinale Mikrobiom in einem genetisch prädisponierten Individuum zur Entstehung von CED führt.rnFür diese Studie ist der genetische, bzw. epigenetische Aspekt, der Pathogenese von CU und MC von besonderem Interesse. In verschiedenen Assoziationsstudien wurden bereits 163 mit CED assoziierte, krankheitsrelevante Gen Loci identifiziert. Zusätzlich wurden Studien durchgeführt, die Methylierungs- und Expressionsunterschiede in Gewebe oder Blut von CED-Patienten gegenüber gesunden Probanden (Kontrollen) aufzeigten. rnIn der vorliegenden Studie wurden entzündliche- und nicht-entzündliche Gewebeproben von CU- (Colon) und MC-Patienten (terminales Ileum und Colon) und gesunden Probanden (terminales Ileum und Colon; nicht entzündlich) auf genspezifischer- und genomweiter Ebene auf Methylierungs- und Expressionsunterschiede hin untersucht. Im Rahmen der genspezifischen Analysen wurde in vier Genen (IL17REL, MUC2, MUC6, MUC15) eine aberrante Methylierung im Vergleich der MC- oder CU-Gewebeproben mit den Kontrollen detektiert. Die an 24 ausgewählten CU Colon-Proben (NE und E) und Colon Kontrollen durchgeführte genomweite Methylierungsanalyse zeigte aberrante Methylierungsmuster in über 2500 Genen im Vergleich der entzündlichen CU Colon E-Proben mit den Kontrollen. Fünf dieser Gene (BACH2, STAT3, STAT4, STK4 und WIPF1) wurden ausgewählt und die Veränderung der Methylierung an einem größeren Patientenkollektiv, welches auch Proben von MC-Patienten umfasst, bestätigt. Zusätzlich zu der aberranten Methylierung wurden Expressionsveränderungen des IL17REL-, MUC6- und STAT4-Gens in MC-Patienten sowie des MUC2-Gens in CU-Patienten identifiziert. rnDa über die Promoterregion und Funktion von IL17REL nur sehr wenig bis gar nichts bekannt ist, wurden zusätzlich Promoteranalysen mittels Dual-Luciferase-Assay durchgeführt. Die Ergebnisse zeigten, dass die höchste Aktivität des putativen IL17REL-Promoters im Bereich -806 – -8 vor der 5’UTR zu finden ist. In diesem Bereich lagen auch die in der Methylierungsanalyse untersuchten CpGs.rn