10 resultados para spinel-lherzolite

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present thesis, the geochemistry, petrology and geochronology of ophiolite complexes from central northern Greece were studied in detail in order to gain insights on the petrogenetic pathways and geodynamic processes that lead to their formation and evolution. The major- and trace-element content of minerals and whole rocks from all four ophiolite complexes was determined using high-precision analytical equipment. These results were then coupled with Nd and Sr isotopic measurements. In order to precisely place the evolution of these ophiolites in time, U-Pb geochronology on zircons was conducted using a SHRIMP-II. The data obtained suggest that the ophiolites studied invariably show typical characteristics of subduction-zone magmatism (e.g. negative Nb anomalies, Th enrichment). In N-MORB-normalised multielement profiles the high field-strength elements display patterns that vary from depleted to N-MORB-like. Chondrite-normalised rare-earth element (REE) profiles show flat heavy-REE patterns suggesting a shallow regime of source melting for all the ophiolites, well within the stability field of spinel lherzolite. The majority of the samples have light-REE depleted patterns. 87Sr/86Sr isotopic ratios range from 0.703184 to 0.715853 and are in cases influenced by alteration. The εNd values are positive (the majority of the mafic samples is typically 7.1-3.1) but lower than N-MORB and depleted mantle. With the exception of the Thessaloniki ophiolite that has uniform island-arc tholeiitic chemical characteristics, the rest of the ophiolites show dual chemistry consisting of rocks with minor subduction-zone characteristics that resemble chemically back-arc basin basalts (BABB) and rocks with more pronounced subduction-zone characteristics. Tectonomagmatic discrimination schemes classify the samples as island-arc tholeiites and back-arc basin basalts or N-MORB. Melting modelling carried out to evaluate source properties and degree of melting verifies the dual nature of the ophiolites. The samples that resemble back-arc basin basalts require very small degrees of melting (<10%) of fertile sources, whereas the rest of the samples require higher degrees (25-15%) of melting. As deduced from the present geochemical and petrological investigation, the ophiolites from Guevguely, Oraeokastro, Thessaloniki, and Chalkidiki represent relics of supra-subduction zone crust that formed in succeeding stages of island-arc rifting and back-arc spreading as well as in a fore arc setting. The geochronological results have provided precise determination of the timing of formation of these complexes. The age of the Guevguely ophiolite has been determined as 167±1.2 Ma, that of Thessaloniki as 169±1.4 Ma, that of Kassandra as 167±2.2 Ma and that of Sithonia as 160±1.2 Ma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of the present study is to understand the mechanism of mass transfer, the composition and the role of fluids during crustal metasomatism in high-temperature metamorphic terranes. A well constrained case study, a locality at Rupaha, Sri Lanka was selected. It is located in the Highland Complex of Sri Lanka, which represents a small, but important fragment of the super-continent Gondwana. Excellent exposures of ultramafic rocks, which are embedded in granulites, were found at 10 localities. These provide a unique background for understanding the metasomatic processes. The boundary between the ultramafic and the granulite rocks are lined with metasomatic reaction zones up to 50cm in width. Progressing from the ultramafics to the granulite host rock, three distinct zones with the following mineral assemblages can be distinguished: (1). phlogopite + spinel + sapphirine, (2). spinel + sapphirine and (3). corundum + biotite + plagioclase. In order to assess the P-T-t path, the peak metamorphism and the exhumation history were constrained using different thermobarometers, as well as a diffusion model of garnet zoning. A maximum temperature of 875 ± 20oC (Opx-Cpx thermometer) and at the peak pressure of 9.0 ± 0.1 kbar (Grt-Cpx-Pl-Qtz) was calculated for the silicic granulite. The ultramafic rocks recorded a peak temperature of 840 ± 70oC (Opx-Cpx thermometer) at 9 kbar. Coexisting spinel and sapphirine from the reaction zone yield a temperature of 820 ± 40oC. This is in agreement with the peak-temperatures recorded in the adjacent granulites and ultramafics rocks. The structural concordance of the ultramafic rocks with the siliceous granulite host rock further support the suggestion, that all units have experienced the same peak metamorphism. Diffusion modeling of retrograde zoning in garnets from mafic granulites suggests a three-step cooling history. A maximum cooling rate of 1oC/Ma is estimated during the initial stage of cooling, followed by a cooling rate of ~30oC/Ma. The outermost rims of garnet indicate a slightly slower cooling rate at about 10-15oC/Ma. The sequences of mineral zones, containing a variety of Al-rich, silica undersaturated minerals in the reaction zones separating the ultramafic rocks from the silica-rich rocks can be explained by a diffusion model. This involves the diffusion of Mg from ultramafic rocks across the layers, and K and Si diffuse in opposite direction. Chemical potential of Mg and Si generated continuous monotonic gradient, allowing steady state diffusional transport across the profile. The strong enrichment in Al, and the considerable loss of Si, during the formation of reaction bands can be inferred from isocon diagrams. Some Al was probably added to the reaction zones, while Si was lost. This is most likely due to fluids percolating parallel to the zones at the boundary of the rock units. This study has shown that not only pressure and temperature conditions but most importantly PH2O and the concentration of the chlorine and fluorine in aqueous fluids also control the mass transport in different geological environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZusammenfassungDie Bildung von mittelozeanischen Rückenbasalten (MORB) ist einer der wichtigsten Stoffflüsse der Erde. Jährlich wird entlang der 75.000 km langen mittelozeanischen Rücken mehr als 20 km3 neue magmatische Kruste gebildet, das sind etwa 90 Prozent der globalen Magmenproduktion. Obwohl ozeanische Rücken und MORB zu den am meisten untersuchten geologischen Themenbereichen gehören, existieren weiterhin einige Streit-fragen. Zu den wichtigsten zählt die Rolle von geodynamischen Rahmenbedingungen, wie etwa Divergenzrate oder die Nähe zu Hotspots oder Transformstörungen, sowie der absolute Aufschmelzgrad, oder die Tiefe, in der die Aufschmelzung unter den Rücken beginnt. Diese Dissertation widmet sich diesen Themen auf der Basis von Haupt- und Spurenelementzusammensetzungen in Mineralen ozeanischer Mantelgesteine.Geochemische Charakteristika von MORB deuten darauf hin, dass der ozeanische Mantel im Stabilitätsfeld von Granatperidotit zu schmelzen beginnt. Neuere Experimente zeigen jedoch, dass die schweren Seltenerdelemente (SEE) kompatibel im Klinopyroxen (Cpx) sind. Aufgrund dieser granatähnlichen Eigenschaft von Cpx wird Granat nicht mehr zur Erklärung der MORB Daten benötigt, wodurch sich der Beginn der Aufschmelzung zu geringeren Drucken verschiebt. Aus diesem Grund ist es wichtig zu überprüfen, ob diese Hypothese mit Daten von abyssalen Peridotiten in Einklang zu bringen ist. Diese am Ozeanboden aufgeschlossenen Mantelfragmente stellen die Residuen des Aufschmelz-prozesses dar, und ihr Mineralchemismus enthält Information über die Bildungs-bedingungen der Magmen. Haupt- und Spurenelementzusammensetzungen von Peridotit-proben des Zentralindischen Rückens (CIR) wurden mit Mikrosonde und Ionensonde bestimmt, und mit veröffentlichten Daten verglichen. Cpx der CIR Peridotite weisen niedrige Verhältnisse von mittleren zu schweren SEE und hohe absolute Konzentrationen der schweren SEE auf. Aufschmelzmodelle eines Spinellperidotits unter Anwendung von üblichen, inkompatiblen Verteilungskoeffizienten (Kd's) können die gemessenen Fraktionierungen von mittleren zu schweren SEE nicht reproduzieren. Die Anwendung der neuen Kd's, die kompatibles Verhalten der schweren SEE im Cpx vorhersagen, ergibt zwar bessere Resultate, kann jedoch nicht die am stärksten fraktionierten Proben erklären. Darüber hinaus werden sehr hohe Aufschmelzgrade benötigt, was nicht mit Hauptelementdaten in Einklang zu bringen ist. Niedrige (~3-5%) Aufschmelzgrade im Stabilitätsfeld von Granatperidotit, gefolgt von weiterer Aufschmelzung von Spinellperidotit kann jedoch die Beobachtungen weitgehend erklären. Aus diesem Grund muss Granat weiterhin als wichtige Phase bei der Genese von MORB betrachtet werden (Kapitel 1).Eine weitere Hürde zum quantitativen Verständnis von Aufschmelzprozessen unter mittelozeanischen Rücken ist die fehlende Korrelation zwischen Haupt- und Spuren-elementen in residuellen abyssalen Peridotiten. Das Cr/(Cr+Al) Verhältnis (Cr#) in Spinell wird im Allgemeinen als guter qualitativer Indikator für den Aufschmelzgrad betrachtet. Die Mineralchemie der CIR Peridotite und publizierte Daten von anderen abyssalen Peridotiten zeigen, dass die schweren SEE sehr gut (r2 ~ 0.9) mit Cr# der koexistierenden Spinelle korreliert. Die Auswertung dieser Korrelation ergibt einen quantitativen Aufschmelz-indikator für Residuen, welcher auf dem Spinellchemismus basiert. Damit kann der Schmelzgrad als Funktion von Cr# in Spinell ausgedrückt werden: F = 0.10×ln(Cr#) + 0.24 (Hellebrand et al., Nature, in review; Kapitel 2). Die Anwendung dieses Indikators auf Mantelproben, für die keine Ionensondendaten verfügbar sind, ermöglicht es, geochemische und geophysikalischen Daten zu verbinden. Aus geodynamischer Perspektive ist der Gakkel Rücken im Arktischen Ozean von großer Bedeutung für das Verständnis von Aufschmelzprozessen, da er weltweit die niedrigste Divergenzrate aufweist und große Transformstörungen fehlen. Publizierte Basaltdaten deuten auf einen extrem niedrigen Aufschmelzgrad hin, was mit globalen Korrelationen im Einklang steht. Stark alterierte Mantelperidotite einer Lokalität entlang des kaum beprobten Gakkel Rückens wurden deshalb auf Primärminerale untersucht. Nur in einer Probe sind oxidierte Spinellpseudomorphosen mit Spuren primärer Spinelle erhalten geblieben. Ihre Cr# ist signifikant höher als die einiger Peridotite von schneller divergierenden Rücken und ihr Schmelzgrad ist damit höher als aufgrund der Basaltzusammensetzungen vermutet. Der unter Anwendung des oben erwähnten Indikators ermittelte Schmelzgrad ermöglicht die Berechnung der Krustenmächtigkeit am Gakkel Rücken. Diese ist wesentlich größer als die aus Schweredaten ermittelte Mächtigkeit, oder die aus der globalen Korrelation zwischen Divergenzrate und mittels Seismik erhaltene Krustendicke. Dieses unerwartete Ergebnis kann möglicherweise auf kompositionelle Heterogenitäten bei niedrigen Schmelzgraden, oder auf eine insgesamt größere Verarmung des Mantels unter dem Gakkel Rücken zurückgeführt werden (Hellebrand et al., Chem.Geol., in review; Kapitel 3).Zusätzliche Informationen zur Modellierung und Analytik sind im Anhang A-C aufgeführt

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dunite, wehrlite and websterite xenoliths occur amongst a large abundance of mantle xenoliths in kimberlites of the Kimberley cluster in South Africa. Up to know they have mostly been neglected. On the basis of texture, major and trace elements, oxygen isotopes as well as Re-Os isotope characteristics, they can be subdivided into two groups. A coarse-grained mantle peridotite group, comprising dunite, wehrlite and websterite xenoliths, that are similar to fertile peridotites and represent upper mantle assemblages that are differently influenced by mantle metasomatism. And a cumulate group, containing fine-grained Fe-rich dunite xenoliths that represent cumulates of flood basalt magmatism related to ~183 Ma Karoo and ~2.7 Ga Ventersdorp events in southern Africa. Dunite, wehrlite and websterite xenoliths have preserved a complex history of melt depletion and metasomatic re-enrichment events, which gives information about the different re-enrichment stages of the subcratonic lithospheric mantle and the spatial differences within the Kaapvaal craton upper mantle. Websterite xenoliths comprise orthopyroxene (40-85 Vol. %), clinopyroxene (5-42 Vol. %), garnet (4-10 Vol. %) and subordinately olivine, while dunite and wehrlite xenoliths contain predominantly olivine (65-100 Vol %) and subordinately orthopyroxene, clinopyroxene and garnet. High melt depletion and a dunitic to harzburgitic protolith composition are reflected by high forsterite (Fo90-92) and high olivine NiO contents (2800-5000 ppm) and high orthopyroxene Mg# (Mg/(Mg+Fe)) of 0.91-0.93. Re-depletion ages of predominantly 2.9 Ga reflect a minimum age of melt depletion. Melt depletion ceased in conjunction with collision of the Kimberley block with the Witwatersrand block ~2.9 Ga ago. Subduction related re-fertilisation of the previously depleted mantle xenoliths is documented by i) amoeboid textured orthopyroxene, clinopyroxene and garnet, which crystallized in schlieren along olivine grain boundaries, ii) high whole-rock SiO2, Al2O3, CaO, TiO2, FeO contents, iii) low oxygen isotope ratios in clinopyroxene and garnet of 4.8-5.4 ‰ and 4.7-5.3 ‰, respectively and iv) trace element compositions of wehrlitic clinopyroxene and garnet in equilibrium with high-pressure partial melts of eclogite. Trace element disequilibrium of orthopyroxene with clinopyroxene and garnet indicates a separate origin for orthopyroxene, on one side as primary mantle orthopyroxene in dunite and wehrlite xenoliths and on the other side as reaction product with Si-rich melts produced by partial melting of eclogite. This reaction triggered replacement of olivine by orthopyroxene in the surrounding mantle and produced the typical Si-rich composition of Kaapvaal mantle peridotites. Partial melting of eclogite at higher temperatures produced a second metasomatic melt with lower SiO2, but higher Al2O3, CaO, FeO, Ti, Zr, Hf and a low oxygen isotope ratio. This melt triggered clinopyroxene and locally garnet and rutile crystallization in percolation veins, replacing olivine and orthopyroxene in the Kaapvaal upper mantle. Additionally, websterite xenoliths have experienced late stage cryptic metasomatism by the host kimberlite melt, changing the trace element composition of clinopyroxene, orthopyroxene and garnet to different extent. Hence websterite and most fertile lherzolite xenoliths have experienced three metasomatic events: i) reaction with high-Si melt, ii) percolation of subduction related silica melt with lower SiO2 content and iii) cryptic metasomatism by kimberlite. In contrast, dunite and wehrlite xenoliths have only experienced the second metasomatic event. They represent mantle lithologies further away from metasomatising agents. The Fe-rich dunites comprise olivine neoblasts with subordinate olivine porphyroclasts and parallel-orientated needles of ilmenite, which may enclose spinel. The lower forsterite and NiO contents of olivine in Fe-rich dunites compared to mantle peridotite xenoliths (Fo87-89 vs. Fo93-95 and 1300-2800ppm vs. 2200-3900 ppm, respectively), rules out a restitic origin. Cr-rich spinels are remnants of the original cumulate mineralogy that survived a late stage metasomatic overprint related to the production of the host kimberlite, producing ilmenite and phlogopite in some samples. Olivine porphyroclasts and neoblasts have different trace element compositions, the latter having high Ti, V, Cr and Ni and low Zn, Zr and Nb contents, indicating contrasting origins for neoblasts and porphyroclasts. The dunites have high 187Os/188Os ratios (0.11-0.15) indicating young (Phanerozoic) model ages for most samples, whereas three samples show isotopic mixtures between Phanerozoic neoblasts and ancient porphyroclastic material. Most Fe-rich dunite xenoliths can be interpreted as cumulates of fractional crystallization of Karoo magmatism, whereas the porphyroclasts are interpreted to be remnants from the much earlier Archaean Ventersdorp magmatism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tiefherd-Beben, die im oberen Erdmantel in einer Tiefe von ca. 400 km auftreten, werden gewöhnlich mit dem in gleicher Tiefe auftretenden druckabhängigen, polymorphen Phasenübergang von Olivine (α-Phase) zu Spinel (β-Phase) in Verbindung gebracht. Es ist jedoch nach wie vor unklar, wie der Phasenübergang mit dem mechanischen Versagen des Mantelmaterials zusammenhängt. Zur Zeit werden im Wesentlichen zwei Modelle diskutiert, die entweder Mikrostrukturen, die durch den Phasenübergang entstehen, oder aber die rheologischen Veränderungen des Mantelgesteins durch den Phasenübergang dafür verantwortlich machen. Dabei sind Untersuchungen der Olivin→Spinel Umwandlung durch die Unzugänglichkeit des natürlichen Materials vollständig auf theoretische Überlegungen sowie Hochdruck-Experimente und Numerische Simulationen beschränkt. Das zentrale Thema dieser Dissertation war es, ein funktionierendes Computermodell zur Simulation der Mikrostrukturen zu entwickeln, die durch den Phasenübergang entstehen. Des Weiteren wurde das Computer Modell angewandt um die mikrostrukturelle Entwicklung von Spinelkörnern und die Kontrollparameter zu untersuchen. Die Arbeit ist daher in zwei Teile unterteilt: Der erste Teil (Kap. 2 und 3) behandelt die physikalischen Gesetzmäßigkeiten und die prinzipielle Funktionsweise des Computer Modells, das auf der Kombination von Gleichungen zur Errechnung der kinetischen Reaktionsgeschwindigkeit mit Gesetzen der Nichtgleichgewichtsthermodynamik unter nicht-hydostatischen Bedingungen beruht. Das Computermodell erweitert ein Federnetzwerk der Software latte aus dem Programmpaket elle. Der wichtigste Parameter ist dabei die Normalspannung auf der Kornoberfläche von Spinel. Darüber hinaus berücksichtigt das Programm die Latenzwärme der Reaktion, die Oberflächenenergie und die geringe Viskosität von Mantelmaterial als weitere wesentliche Parameter in der Berechnung der Reaktionskinetic. Das Wachstumsverhalten und die fraktale Dimension von errechneten Spinelkörnern ist dabei in guter Übereinstimmung mit Spinelstrukturen aus Hochdruckexperimenten. Im zweiten Teil der Arbeit wird das Computermodell angewandt, um die Entwicklung der Oberflächenstruktur von Spinelkörnern unter verschiedenen Bedigungen zu eruieren. Die sogenannte ’anticrack theory of faulting’, die den katastrophalen Verlauf der Olivine→Spinel Umwandlung in olivinhaltigem Material unter differentieller Spannung durch Spannungskonzentrationen erklärt, wurde anhand des Computermodells untersucht. Der entsprechende Mechanismus konnte dabei nicht bestätigt werden. Stattdessen können Oberflächenstrukturen, die Ähnlichkeiten zu Anticracks aufweisen, durch Unreinheiten des Materials erklärt werden (Kap. 4). Eine Reihe von Simulationen wurde der Herleitung der wichtigsten Kontrollparameter der Reaktion in monomineralischem Olivin gewidmet (Kap. 5 and Kap. 6). Als wichtigste Einflüsse auf die Kornform von Spinel stellten sich dabei die Hauptnormalspannungen auf dem System sowie Heterogenitäten im Wirtsminerals und die Viskosität heraus. Im weiteren Verlauf wurden die Nukleierung und das Wachstum von Spinel in polymineralischen Mineralparagenesen untersucht (Kap. 7). Die Reaktionsgeschwindigkeit der Olivine→Spinel Umwandlung und die Entwicklung von Spinelnetzwerken und Clustern wird durch die Gegenwart nicht-reaktiver Minerale wie Granat oder Pyroxen erheblich beschleunigt. Die Bildung von Spinelnetzwerken hat das Potential, die mechanischen Eigenschaften von Mantelgestein erheblich zu beeinflussen, sei es durch die Bildung potentieller Scherzonen oder durch Gerüstbildung. Dieser Lokalisierungprozess des Spinelwachstums in Mantelgesteinen kann daher ein neues Erklärungsmuster für Tiefbeben darstellen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tertiäre Vulkanite aus dem Eckfelder Maar, dem Hillscheider Diatrem und dem Hillscheid Basalt (Schlot) wurden petrologisch und geochemisch untersucht. Bis auf tonige Klasten aus dem Bohrkern des Eckfelder Maares handelt es sich bei allen weiteren Proben um undifferenzierte basische Vulkanite. Die tonigen Klasten aus dem Bohrkern müssen der ehemaligen Landoberfläche vor der Eruption des Eckfelder Maares zugerechnet werden, in dessen Krater sie während der Eruption hineingefallen sind. Bis auf die Proben des Hillscheid Basaltes sind die Proben alteriert. Die Alteration zeigt sich an der Bildung von Zeolithen und Calcitmineralisationen, die primär und sekundär gebildete Hohlräume aufgefüllt haben oder an einer vertonten Grundmasse der Proben, die daneben Mineraleinschlüsse (Spinell) und kantige Fremdgesteinsbruchstücke enthalten können. Bei den Proben mit vertonter Grundmasse handelt es sich um Palagonite, Umwandlungsprodukte aus Sideromelan (basaltischem Glas). Geochemische Analysen an Grundmassepräparaten der alterierten bis vertonten Proben zeigen, dass außer den immobilen Elementen Ti, Nb, Zr, Y alle weiteren Elemente teilweise bis vollständig abgereichert worden sind. Eine Ausnahme bildet Barium (Ba), welches z.T. in beträchtlichen Mengen in Zeolithen (Harmotom) angereichert wurde. Bei den Proben aus dem Eckfelder Maar kann die Alteration bis Vertonung der Proben alleine mit der Palagonitisierung und Verwitterung erklärt werden. Es gibt keine Hinweise auf Materialzufuhr und damit für sich anschließende hydrothermale Prozesse. Die Proben des Hillscheider Diatrem sind wesentlich geringer alteriert (glasige Grundmasse). Neuste Erkenntnisse aus einer Bohrung im Sommer 1999 im vermuteten Zentrum des Hillscheider Diatrems beschränken das Diatrem maximal auf einen kleineren Bereich im Nordosten der bisherigen Lokation. Bei der Bohrung stieß man nach 20 Meter auf Anstehendes. Im Hangschutt darüber fand man Blöcke des Hillscheid Basaltes. Eine geringere Größe der Lokation zusammen mit der geringen Alteration könnten auf deren Entstehung mit einer initialen Maarphase gefolgt von Schlackentätigkeit hinweisen. Die Schlacken könnten die ersten Ablagerungen vor Verwitterung geschützt haben. Allerdings gibt es keine Funde die eine Schlackentätigkeit belegen. Beim sogenannten 'Hillscheider Diatrem' könnte es sich aber auch um Hangschutt aus der Randbreccie des Hillscheider Basaltes handeln. Zusammen mit Bruchstücken aus dem Schlot des Hillscheid Basaltes wären die Palagonite des sogenannten 'Hillscheider Diatrem' erst in jüngster Zeit im Bereich einer Uferböschung zur Ablagerung gekommen. Dies würde allerdings das sogenannte 'Hillscheider Diatrem' in seiner Existenz in Frage stellen. Vergleiche der Proben des Hillscheid Basaltes mit basischen Hocheifelvulkaniten deuten auf kogenetische Beziehung aller Proben untereinander und ordnen die Proben des Hillscheid Basaltes geochemisch dem Hocheifelvulkanismus zu. REE- und weitere Spurenelementgehalte und auch deren Elementverhältnisse weisen für alle tertiären Eifelvulkanite gemeinsam auf Mantelschmelzen aus dem Bereich eines Granatperidotits mit niedrigen Aufschmelzgraden um ein Prozent hin. Vergleich der Elementverhältnisse hochinkompatibler Elemente im Bezug auf die Bildung mafischer Schmelzen mit primitivem Mantel deuten darauf hin, dass der Mantel im Bereich der Hocheifel verarmt ist an K, Rb, Sr und angereichert an Ba und eventuell an Nb. Ursachen für diese von typisch primären Mantelzusammensetzung abweichenden Verhältnisse könnten durch Mischungen von Mantelschmelzen mit lithosphärischem Mantel (K-Anomalie) und durch Anreicherungen mit fluiden Phasen (Ba-Anomalie) oder auch Schmelzen aus einem tieferliegenden Plume (Kelberger Hoch) verursacht worden sein. Englischer Zusammenfassung:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die vorliegende Arbeit behandelt die Entwicklung des 570 Ma alten, neoproterozoischen Agardagh - Tes-Chem Ophioliths (ATCO) in Zentralasien. Dieser Ophiolith liegt südwestlich des Baikalsees (50.5° N, 95° E) und wurde im frühen Stadium der Akkretion des Zentralasiatischen Mobilgürtels auf den nordwestlichen Rand des Tuvinisch-Mongolischen Mikrokontinentes aufgeschoben. Bei dem Zentralasiatische Mobilgürtel handelt es sich um einen riesigen Akkretions-Subduktionskomplex, der heute das größte zusammenhängende Orogen der Erde darstellt. Im Rahmen dieser Arbeit wurden eine Reihe plutonischer und vulkanischer Gesteine, sowie verschiedene Mantelgesteine des ATCO mittels mikroanalytischer und geochemischer Verfahren untersucht (Elektronenstrahlmikrosonde, Ionenstrahlmikrosonde, Spurenelement- und Isotopengeochemie). Die Auswertung dieser Daten ermöglichte die Entwicklung eines geodynamisch-petrologischen Modells zur Entstehung des ATCO. Die vulkanischen Gesteine lassen sich aufgrund ihrer Spurenelement- und Isotopenzusammensetzung in inselbogenbezogene und back-arc Becken bezogene Gesteine (IA-Gesteine und BAB-Gesteine) unterscheiden. Darüber hinaus gibt es eine weitere, nicht eindeutig zuzuordnende Gruppe, die hauptsächlich mafische Gänge umfasst. Der grösste Teil der untersuchen Vulkanite gehört zur Gruppe der IA-Gesteine. Es handelt sich um Al-reiche Basalte und basaltische Andesite, welche aus einem evolvierten Stammmagma mit Mg# 0.60, Cr ~ 180 µg/g und Ni ~ 95 µg/g hauptsächlich durch Klinopyroxenfraktionierung entstanden sind. Das Stammmagma selbst entstand durch Fraktionierung von ca. 12 % Olivin und geringen Anteilen von Cr-Spinell aus einer primären, aus dem Mantel abgeleiteten Schmelze. Die IA-Gesteine haben hohe Konzentrationen an inkompatiblen Spurenelementen (leichte-(L)- Seltenerdelement-(SEE)-Konzentrationen etwa 100-fach chondritisch, chondrit-normierte (La/Yb)c von 14.6 - 5.1), negative Nb-Anomalien (Nb/La = 0.37 - 0.62) und niedrige Zr/Nb Verhältnisse (7 - 14) relativ zu den BAB-Gesteinen. Initiale eNd Werte liegen bei etwa +5.5, initiale Bleiisotopenverhältnisse sind: 206Pb/204Pb = 17.39 - 18.45, 207Pb/204Pb = 15.49 - 15.61, 208Pb/204Pb = 37.06 - 38.05. Die Anreicherung lithophiler inkompatibler Spurenelemente (LILE) in dieser Gruppe ist signifikant (Ba/La = 11 - 130) und zeigt den Einfluss subduzierter Komponenten an. Die BAB-Gesteine repräsentieren Schmelzen, die sehr wahrscheinlich aus der gleichen Mantelquelle wie die IA-Gesteine stammen, aber durch höhere Aufschmelzgrade (8 - 15 %) und ohne den Einfluss subduzierter Komponenten entstanden sind. Sie haben niedrigere Konzentrationen an inkompatiblen Spurenelementen, flache SEE-Muster ((La/Yb)c = 0.6 - 2.4) und höhere initiale eNd Werte zwischen +7.8 und +8.5. Nb Anomalien existieren nicht und Zr/Nb Verhältnisse sind hoch (21 - 48). Um die geochemische Entwicklung der vulkanischen Gesteine des ATCO zu erklären, sind mindestens drei Komponenten erforderlich: (1) eine angereicherte, ozeaninselbasalt-ähnliche Komponente mit hoher Nb Konzentration über ~ 30 µg/g, einem niedrigen Zr/Nb Verhältnis (ca. 6.5), einem niedrigen initialen eNd Wert (um 0), aber mit radiogenen 206Pb/204Pb-, 207Pb/204Pb- und 208Pb/204Pb-Verhältnissen; (2) eine N-MORB ähnliche back-arc Becken Komponente mit flachem SEE-Muster und einem hohen initialen eNd Wert von mindestens +8.5, und (3) eine Inselbogen-Komponente aus einer verarmten Mantelquelle, welche durch die abtauchende Platte geochemisch modifiziert wurde. Die geochemische Entstehung der ATCO Vulkanite lässt sich dann am besten durch eine Kombination aus Quellenkontamination, fraktionierte Kristallisation und Magmenmischung erklären. Geodynamisch gesehen entstand der ATCO sehr wahrscheinlich in einem intraozeanischen Inselbogen - back-arc System. Bei den untersuchten Plutoniten handelt es sich um ultramafische Kumulate (Wehrlite und Pyroxenite) sowie um gabbroische Plutonite (Olivin-Gabbros bis Diorite). Die geochemischen Charakteristika der mafischen Plutonite sind deutlich unterschiedlich zu denen der vulkanischen Gesteine, weshalb sie sehr wahrscheinlich ein späteres Entwicklungsstadium des ATCO repräsentieren. Die Spurenelement-Konzentrationen in den Klinopyroxenen der ultramafischen Kumulate sind extrem niedrig, mit etwa 0.1- bis 1-fach chondritischen SEE-Konzentrationen und mit deutlich LSEE-verarmten Mustern ((La/Yb)c = 0.27 - 0.52). Berechnete Gleichgewichtsschmelzen der ultramafischen Kumulate zeigen grosse Ähnlichkeit zu primären boninitischen Schmelzen. Die primären Magmen waren daher boninitischer Zusammensetzung und entstanden in dem durch vorausgegangene Schmelzprozesse stark verarmten Mantelkeil über einer Subduktionszone. Niedrige Spurenelement-Konzentrationen zeigen einen geringen Einfluss der abtauchenden Platte an. Die Spurenelement-Konzentrationen der Gabbros sind ebenfalls niedrig, mit etwa 0.5 - 10-fach chondritischen SEE-Konzentrationen und mit variablen SEE-Mustern ((La/Yb)c = 0.25 - 2.6). Analog zu den Vulkaniten der IA-Gruppe haben alle Gabbros eine negative Nb-Anomalie mit Nb/La = 0.01 - 0.31. Die initialen eNd Werte der Gabbros variieren zwischen +4.8 und +7.1, mit einem Mittelwert von +5.9, und sind damit identisch mit denen der IA-Vulkanite. Bei den untersuchten Mantelgesteinen handelt es sich um teilweise serpentinisierte Dunite und Harzburgite, die alle durch hohe Mg/Si- und niedrige Al/Si-Verhältnisse gekennzeichnet sind. Dies zeigt einen refraktären Charakter an und steht in guter Übereinstimmung mit den hohen Cr-Zahlen (Cr#) der Spinelle (bis zu Cr# = 0.83), auf deren Basis der Aufschmelzgrad der residuellen Mantelgesteine berechnet wurde. Dieser beträgt etwa 25 %. Die geochemische Zusammensetzung und die petrologischen Daten der Ultramafite und Gabbros lassen sich am besten erklären, wenn man für die Entstehung dieser Gesteine einen zweistufigen Prozess annimmt. In einer ersten Stufe entstanden die ultramafischen Kumulate unter hohem Druck in einer Magmenkammer an der Krustenbasis, hauptsächlich durch Klinopyroxen-Fraktionierung. Bei dieser Magmenkammer handelte es sich um ein offenes System, dem von unten laufend neue Schmelze zugeführt wurde, und aus dem im oberen Bereich evolviertere Schmelzen geringerer Dichte entwichen. Diese evolvierten Schmelzen stiegen in flachere krustale Bereiche auf und bildeten dort meist isolierte Intrusionskörper. Diese Intrusionskörper erstarrten ohne Magmen-Nachschub, weshalb petrographisch sehr unterschiedliche Gesteine entstehen konnten. Eine geochemische Modifikation der abkühlenden Schmelzen erfolgte allerdings durch die Assimilation von Nebengestein. Da innerhalb der Gabbros keine signifikante Variation der initalen eNd Werte existiert, handelte es sich bei dem assimilierten Material hauptsächlich um vulkanische Gesteine des ATCO und nicht um ältere, möglicherweise kontinentale Kruste.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The global mid-ocean ridge system creates oceanic crust and lithosphere that covers more than two-thirds of the Earth. Basalts are volumetrically the most important rock type sampled at mid-ocean ridges. For this reason, our present understanding of upper mantle dynamics and the chemical evolution of the earth is strongly influenced by the study of mid-ocean ridge basalts (MORB). However, MORB are aggregates of polybarically generated small melt increments that can undergo a variety of physical and chemical processes during their ascent and consequently affect their derivative geochemical composition. Therefore, MORB do not represent “direct” windows to the underlying upper mantle. Abyssal peridotites, upper mantle rocks recovered from the ocean floor, are the residual complement to MORB melting and provide essential information on melt extraction from the upper mantle. In this study, abyssal peridotites are examined to address these overarching questions posed by previous studies of MORB: How are basaltic melts formed in the mantle, how are they extracted from the mantle and what physical and chemical processes control mantle melting? The number of studies on abyssal peridotites is small compared to those on basalts, in part because seafloor exposures of abyssal peridotites are relatively rare. For this reason, abyssal peridotite characteristics need to be considered in the context of subaerially exposed peridotites associated with ophiolites, orogenic peridotite bodies and basalt-hosted xenoliths. However, orogenic peridotite bodies are mainly associated with passive continental margins, most ophiolites are formed in supra-subduction zone settings, and peridotite xenoliths are often contaminated by their host magma. Therefore, studies of abyssal peridotites are essential to understanding the primary characteristics of the oceanic upper mantle free from the influence of continental rifting, subduction and tectonic emplacement processes. Nevertheless, numerous processes such as melt stagnation and cooling-induced, inter-mineral exchange can affect residual abyssal peridotite compositions after the cessation of melting. The aim of this study is to address these post-melting modifications of abyssal peridotites from a petrological-geochemical perspective. The samples in this study were dredged along the axis of the ultraslow-spreading Gakkel Ridge in the Arctic Ocean within the “Sparsely Magmatic Zone”, a 100 km ridge section where only mantle rocks are exposed. During two expeditions (ARK XVII-2 in 2001 and ARK XX-2 in 2004), exceptionally fresh peridotites were recovered. The boulders and cobbles collected cover a range of mantle rock compositions, with most characterized as plagioclase-free spinel peridotites or plagioclase- spinel peridotites. This thesis investigates melt stagnation and cooling processes in the upper mantle and is divided into two parts. The first part focuses on processes in the stability field of spinel peridotites (>10 kb) such as melt refertilization and cooling related trace element exchange, while the second part investigates processes in the stability field of plagioclase peridotites (< 10 kb) such as reactive melt migration and melt stagnation. The dissertation chapters are organized to follow the theoretical ascent of a mantle parcel upwelling beneath the location where the samples were collected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The PhD thesis at hand consists of three parts and describes the petrogenetic evolution of Uralian-Alaskan-type mafic ultramafic complexes in the Ural Mountains, Russia. Uralian-Alaskan-type mafic-ultramafic complexes are recognized as a distinct class of intrusions. Characteristic petrologic features are the concentric zonation of a central dunite body grading outward into wehrlite, clinopyroxenite and gabbro, the absence of orthopyroxene and frequently occurring platinum group element (PGE) mineralization. In addition, the presence of ferric iron-rich spinel discriminates Uralian-Alaskan-type complexes from most other mafic ultramafic rock assemblages. The studied Uralian-Alaskan-type complexes (Nizhnii Tagil, Kytlym and Svetley Bor) belong to the southern part of a 900 km long, N–S-trending chain of similar intrusions between the Main Uralian Fault to the west and the Serov-Mauk Fault to the east. The first chapter of this thesis studies the evolution of the ultramafic rocks tracing the compositional variations of rock forming and accessory minerals. The comparison of the chemical composition of olivine, clinopyroxene and chromian spinel from the Urals with data from other localities indicates that they are unique intrusions having a characteristic spinel and clinopyroxene chemistry. Laser ablation-ICPMS (LA-ICPMS ) analyses of trace element concentrations in clinopyroxene are used to calculate the composition of their parental melt which is characterized by enriched LREE (0.5-5.2 prim. mantle) and other highly incompatible elements (U, Th, Ba, Rb) relative to the HREE (0.25-2.0 prim. mantle). A subduction-related geotectonic setting is indicated by a positive anomaly for Sr and negative anomalies for Ti, Zr and Hf. The mineral compositions monitor the evolution of the parental magmas and decipher differences between the studied complexes. In addition, the observed variation in LREE/HREE (for example La/Lu = 2-24) can be best explained with the model of an episodically replenished and erupted open magma chamber system with the extensive fractionation of olivine, spinel and clinopyroxene. The data also show that ankaramites in a subduction-related geotectonic setting could represent parental magmas of Uralian-Alaskan-type complexes. The second chapter of the thesis discusses the chemical variation of major and trace elements in rock-forming minerals of the mafic rocks. Electron microprobe and LA-ICPMS analyses are used to quantitatively describe the petrogenetic relationship between the different gabbroic lithologies and their genetic link to the ultramafic rocks. The composition of clinopyroxene identifies the presence of melts with different trace element abundances on the scale of a thin section and suggests the presence of open system crustal magma chambers. Even on a regional scale the large variation of trace element concentrations and ratios in clinopyroxene (e.g. La/Lu = 3-55) is best explained by the interaction of at least two fundamentally different magma types at various stages of fractionation. This requires the existence of a complex magma chamber system fed with multiple pulses of magmas from at least two different coeval sources in a subduction-related environment. One source produces silica saturated Island arc tholeiitic melts. The second source produces silica undersaturated, ultra-calcic, alkaline melts. Taken these data collectively, the mixing of the two different parental magmas is the dominant petrogenetic process explaining the observed chemical variations. The results further imply that this is an intrinsic feature of Uralian-Alaskan-type complexes and probably of many similar mafic-ultramafic complexes world-wide. In the third chapter of this thesis the major element composition of homogeneous and exsolved spinel is used as a petrogenetic indicator. Homogeneous chromian spinel in dunites and wehrlites monitors the fractionation during the early stages of the magma chamber and the onset of clinopyroxene fractionation as well as the reaction of spinel with interstitial liquid. Exsolved spinel is present in mafic and ultramafic rocks from all three studied complexes. Its composition lies along a solvus curve which defines an equilibrium temperature of 600°C, given that spinel coexists with olivine. This temperature is considered to be close to the temperature of the host rocks into which the studied Uralian-Alaskan-type complexes intruded. The similarity of the exsolution temperatures in the different complexes over a distance of several hundred kilometres implies a regional tectonic event that terminated the exsolution process. This event is potentially associated with the final exhumation of the Uralian-Alaskan-type complexes along the Main Uralian Fault and the Serov-Mauk Fault in the Uralian fold belt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ivrea Zone in northern Italy has been the focus of numerous petrological, geochemical and structural studies. It is commonly inferred to represent an almost complete section through the mid to lower continental crust, in which metamorphism and partial melting of the abundant metapelites was the result of magmatic underplating by a large volume of mantle-derived magma. This study concerns amphibolite and granulite facies metamorphism in the Ivrea Zone with focus on metapelites and metapsammites/metagreywackes from Val Strona di Omegna and metapelites from Val Sesia and Val Strona di Postua, with the aim to better constrain their metamorphic evolution as well as their pressure and temperature conditions via phase equilibria modelling.rnrnIn Val Strona di Omegna, the metapelites show a structural and mineralogical change from mica-schists with the common assemblage bi-mu-sill-pl-q-ilm ± liq at the lowest grades, through metatexitic migmatites (g-sill-bi-ksp-pl-q-ilm-liq) at intermediate grades, to complex diatexitic migmatites (g-sill-ru-bi-ksp-pl-q-ilm-liq) at the highest grades. Within this section several mappable isograds occur, including the first appearance of K-feldspar in the metapelites, the first appearance of orthopyroxene in the metabasites and the disappearance of prograde biotite from the metapelites. The inferred onset of partial melting in the metapelites occurs around Massiola. The prograde suprasolidus evolution of the metapelites is consistent with melting via the breakdown of first muscovite then biotite. Maximum modelled melt fractions of 30–40 % are predicted at the highest grade. The regional metamorphic field gradient in Val Strona di Omegna is constrained to range from conditions of 3.5–6.5 kbar at T = 650–730 °C to P &gt; 9 kbar at T &gt; 900 °C. The peak P–T estimates, particularly for granulite facies conditions, are significantly higher (around 100 °C) than those of most previous studies. In Val Sesia and Val Strona di Postua to the south the exposure is more restricted. P–T estimates for the metapelites are 750–850 °C and 5–6.5 kbar in Val Sesia and approximately 800–900 °C and 5.5–7 kbar in Val Strona di Postua. These results show similar temperatures but lower pressure than metapelites in Val Strona di Omegna. Metapelites in Val Sesia in contact with the Mafic Complex exhibit a metatexitic structure, while in Val Strona di Postua diatexitic structures occur. Further, metapelites at the contact with the Mafic Complex contain cordierite (± spinel) that overprint the regional metamorphic assemblages and are interpreted to have formed during contact metamorphism related to intrusion of the Mafic Complex. The lower pressures in the high-grade rocks in Val Sesia and Val Strona di Postua are consistent with some decompression from the regional metamorphic peak prior to the intrusion of the Mafic Complex, suggesting the rocks followed a clockwise P–T path. In contrast, the metapelites in Val Strona di Omegna, especially in the granulite facies, do not contain any cordierite or any evidence for a contact metamorphic overprint. The extrapolated granulite facies mineral isograds are cut by the rocks of the Mafic Complex to the south. Therefore, the Mafic Complex cannot have caused the regional metamorphism and it is unlikely that the Mafic Complex occurs in Val Strona di Omegna.