2 resultados para sphingomyelin
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The amyloid peptide (Aß), a normal constituent of neuronal and non-neuronal cells, has been shown to be a major component of the extracellular plaque of Alzheimer’s disease (AD). The interaction of Aß peptides with the lipid matrix of neuronal cell membranes plays an important role in the pathogenesis of AD. In this study, we have developed peptide-tethered artificial lipid membranes by the Langmuir-Blodgett and Langmuir-Schaefer methods. Anti-Aß40-mAb labeled with a fluorophore was used to probe the Aß40 binding to the model membrane system. Systematic studies on the antibody or Aß-membrane interactions were carried out in our model systems by Surface Plasmon Field-Enhanced Fluorescence Spectroscopy (SPFS). Aß adsorption is critically determined by the lipid composition of the membranes. Aß specifically binds with membranes of sphingomyelin, and this preferential adsorption was markedly amplified by the addition of sterols (cholesterol or 25-OH-Chol). Fluorescence microscopy indicated that 25-OH-Chol could also form micro-domains with sphingomyelin as cholesterol does at the conditions used for the built-up of the model membranes. Our findings suggest that micro-domains composed of sphingomyelin and the sterols could be the binding sites of Aß and the role of sphingomyelin in AD should receive much more attention. The artificial membranes provide a novel platform for the study on AD, and SPFS is a potential tool for detecting Aß-membrane interaction. Numerous investigations indicate that the ability of Aß to form fibrils is considerably dependent upon the levels of ß-sheet structure adopted by Aß. Membrane-mediated conformational transition of Aß has been demonstrated. In this study, we focus on the interaction of Aß and the membranes composed of POPC/SM/25-OH-Chol (2:1:1). The artificial membrane system was established by the methods as described above. Immunoassy based on a pair of monoclonal antibodies (mAbs) against different epitopes was employed to detect the orientation of the Aß at the model membranes. Kinetics of antibody-Aß binding was determined by surface plasmon field-enhanced fluorescence spectroscopy (SPFS). The attempt has also been made to probe the change in the conformation of Aß using SPFS combined with immunoassay. Melatonin was employed to induce the conformational change of Aß. The orientation and the conformational change of Aß are evaluated by analysing kinetic/affinity parameters. This work provides novel insight into the investigation on the structure of Aß at the membrane surface.
Resumo:
Zusammenfassung rnrnIn dieser Arbeit wurden Untersuchungen an zwei verschiedenen multimeren Proteinkomplexen durchgeführt: Zum einen am Hämocyanin aus Homarus americanus mittels Röntgen-L-Kantenspektroskopie und zum anderen am α-Toxin aus Staphylococcus aureus, hinsichtlich der Interaktion an speziellen Raft-artigen Membranabschnitten, mittels AFM.rnFür das Hämocyanin aus Homarus americanus konnte ein neuer Aspekt bezüglich der Bindung von Sauerstoff aufgezeigt werden. Ein zuvor nicht in Betracht gezogener und diskutierter Einfluss von Wassermolekülen auf diesen Vorgang konnte mittels der Methode der Röntgen-L-Kantenspektroskopie dargestellt werden. Erstmals war es möglich die beiden verschiedenen Beladungszustände (Oxy-, Deoxy-Zustand) des Hämocyanin mittels dieser Methode in physiologisch ähnlicher Umgebung zu untersuchen. Vergleiche der erhaltenen L-Kanten-Spektren mit denen anorganischer Vergleichslösungen ließen auf eine Interaktion von Wassermolekülen mit den beiden Kupferatomen des aktiven Zentrums schließen. Dadurch wurde erstmals ein möglicher Einfluss des Wassers auf den Oxygenierungsprozess des Hämocyanins auf elektronischer Ebene aufgezeigt. Vergleichende Betrachtungen von Röntgenkristallstrukturen verschiedener Typ-3-Kupferproteine bestätigten, dass auch hier ein Einfluss von Wassermolekülen auf die aktiven Zentren möglich ist. Vorgeschlagen wird dabei, dass an Stelle der Überlappung der 3d-Orbitale des Kupfers mit den 2p-Orbitalen des Sauerstoffs, wie sie im sauerstoffbeladenen Zustand auftritt, im sauerstoffunbeladenen Zustand eine Wechselwirkung der 3d-Orbitale des Kupfers mit den LUMOS der Wassermoleküle möglich wird, und ein Elektronen- bzw. Ladungstransfer von den Kupfern auf die Wassermoleküle erfolgen kann. rnAFM-Untersuchungen hinsichtlich der Interaktion des α-Toxins aus Staphylococcus aureus mit oberflächenunterstützten Modellmembranen wiesen darauf hin, dass eine bevorzugte Anbindung und zumindest teilweise Integration der α-Toxine in Raft-artige Membranbereiche stattfindet. Für verschiedene ternäre Lipidsysteme konnten phasenseparierte Modellmembranen abgebildet und die unterschiedlichen Domänenformen zugeordnet werden. Der Anbindungsprozess der Toxine an diese oberflächenunterstützte Modellmembranen erfolgte dann wahrscheinlich vornehmlich an den speziellen Raft-artigen Domänen, wohingegen die Insertion der Poren vorrangig an den Grenzbereichen zwischen den Domänen auftrat. Mögliche Ursache dafür sind die räumlichen Besonderheiten dieser Grenzflächen. Membranen weisen an den Schnittstellen zwischen zwei Domänenformen eine erhöhte Unordnung auf, was sich u.a. in einer geringeren Packungsdichte der Phospholipide und dem erhöhten Freiheitsgrad ihrer Kopfgruppen bemerkbar macht. Außerdem kommt es auf Grund der Interaktion der beteiligten Membranbestandteile Sphingomyelin und Cholesterol untereinander zu einer speziellen Ausrichtung der Phosphocholin-Kopfgruppen und innerhalb der Raft-artigen Domänen zu einer erhöhten Packungsdichte der Phospholipide. Die in dieser Arbeit präsentierten Ergebnisse unterstützten demnach die in der Literatur postulierte Vermutung der bevorzugten Interaktion und Integration der Toxin-Moleküle mit Raft-artigen Membrandomänen. Die Insertion der Pore erfolgt aber wahrscheinlich bevorzugt an den Grenzbereichen zwischen den auftretenden Domänen.rn