3 resultados para social insects
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In meiner Dissertation beschäftigte ich mich mit unterschiedlichen Verteidungsstrategien, derenrnEffektivität und Evolution, der Ameisenart Temnothorax longispinosus (“Sklaven”), gegenüberrneinem sozialen Parasiten - der nahverwandten, sklavenhaltenden Art Protomognathusrnamericanus (“Sklavenhalter”). Wir entdeckten eine neue Kategorie der Verteidigungsstrategie,rnwelche es dem Wirten ermöglicht, flexibel auf die nicht vorhersagbaren Angriffe des Parasitenrnzu reagieren. Darüber hinaus erforschten wir, wie die Wirte ihre kollektive Verteidigung an einernVielzahl unterschiedlicher Angreifer anpassen können. Wir konnten feststellen, dass Wirte in derrnLage sind ihre kollektive Verteidigung dem Grad der Bedrohung anzupassen. Dies weist daraufrnhin, dass Selektion die Verteidigung gegen unterschiedliche Typen von Angreifern voneinanderrnunabhängig beeinflussen könnte. In einer dritten Studie belegten wir experimentell, dass diernParasiten die Evolution der Kolonieaggressivität der Wirtsart direkt beeinflussen. Die letztenrnbeiden Publikationen beschäftigten sich mit Sklavenrebellion, einer rätselhaftenrnVerteidigungsstrategie, da noch unklar ist, wie eine Eigenschaft von nicht reproduzierendenrnIndividuen vererbt werden kann. In einer Metaanalyse konnten wir die weite Verbreitung undrnhohe Variabilität dieser Eigenschaft dokumentieren, und fanden Hinweise, dassrnVerwandtenselektion eine mögliche Erklärung für die Evolution dieses Merkmals darstellenrnkönnte.
Resumo:
Inbreeding can lead to a fitness reduction due to the unmasking of deleterious recessive alleles and the loss of heterosis. Therefore, most sexually reproducing organisms avoid inbreeding, often by disperal. Besides the avoidance of inbreeding, dispersal lowers intraspecific competition on a local scale and leads to a spreading of genotypes into new habitats. In social insects, winged reproductives disperse and mate during nuptial flights. Therafter, queens independently found a new colony. However, some species also produce wingless sexuals as an alternative reproductive tactic. Wingless sexuals mate within or close to their colony and queens either stay in the nest or they found a new colony by budding. During this dependent colony foundation, wingless queens are accompanied by a fraction of nestmate workers. The production of wingless reproductives therefore circumvents the risks associated with dispersal and independent colony foundation. However, the absence of dispersal can lead to inbreeding and local competition.rnIn my PhD-project, I investigated the mating biology of Hypoponera opacior, an ant that produces winged and wingless reproductives in a population in Arizona. Besides the investigation of the annual reproductive cycle, I particularly focused on the consequences of wingless reproduction. An analysis of sex ratios in wingless sexuals should reveal the relative importance of local resource competition among queens (that mainly compete for the help of workers) and local mate competition among males. Further, sexual selection was expected to act on wingless males that were previously found to mate with and mate-guard pupal queens in response to local mate competition. We studied whether males are able to adapt their mating behaviour to the current competitive situation in the nest and which traits are under selection in this mating situation. Last, we investigated the extent and effects of inbreeding. As the species appeared to produce non-dispersive males and queens quite frequently, we assumed to find no or only weak negative effects of inbreeding and potentially mechanisms that moderate inbreeding levels despite frequent nest-matings.rnWe found that winged and wingless males and queens are produced during two separate seasons of the year. Winged sexuals emerge in early summer and conduct nuptial flights in July, when climate conditions due to frequent rainfalls lower the risks of dispersal and independent colony foundation. In fall, wingless sexuals are produced that reproduce within the colonies leading to an expansion on the local scale. The absence of dispersal during this second reproductive season resulted in a local genetic population viscosity and high levels of inbreeding within the colonies. Male-biased sex ratios in fall indicated a greater importance of local resource competition among queens than local mate competition among males. Males were observed to adjust mate-guarding durations to the competitive situation (i.e. the number of competing males and pupae) in the nest, an adaptation that helps maximising their reproductive success. Further, sexual selection was found to act on the timing of emergence as well as on body size in these males, i.e. earlier emerging and larger males show a higher mating success. Genetic analyses revealed that wingless males do not actively avoid inbreeding by choosing less related queens as mating partners. Further, we detected diploid males, a male type that is produced instead of diploid females if close relatives mate. In contrast to many other Hymenopteran species, diploid males were here viable and able to sire sterile triploid offspring. They did not differ in lifespan, body size and mating success from “normal” haploid males. Hence, diploid male production in H. opacior is less costly than in other social Hymenopteran species. No evidence of inbreeding depression was found on the colony level but more inbred colonies invested more resources into the production of sexuals. This effect was more pronounced in the dispersive summer generation. The increased investment in outbreeding sexuals can be regarded as an active strategy to moderate the extent and effects of inbreeding. rnIn summary, my thesis describes an ant species that has evolved alternative reproductive tactics as an adaptation to seasonal environmental variations. Hereby, the species is able to maintain its adaptive mating system without suffering from negative effects due to the absence of dispersal flights in fall.rn
Resumo:
In my doctoral thesis I investigated the evolution of demographic traits within eusocial Hymenoptera. In the social bees, wasps and ants, eusociality has a unique effect on life span evolution as female larvae with the same genetic background can develop through phenotypic plasticity to a queen or a worker with vastly diverging life-history traits. Ant queens belong to the longest-lived insect species, while workers in most species live only a fraction of the queen’s life span. The average colony size of a species is positively correlated with social complexity, division of labor and diverging morphological female phenotypes all of which also affect life span. Therefore the demographic traits of interest in this thesis were life span and colony size. To understand the evolution of worker life span I applied a trade-off model that includes both hierarchical levels important in eusocial systems, namely the colony- and the individual-level. I showed that the evolution of worker life span may be an adaptive trait on the colony level to optimize resource allocation and therefore fitness in response to different levels of extrinsic mortality. A shorter worker life span as a result of reduced resource investments under high levels of extrinsic mortality increases colony fitness. In a further study I showed that Lasius niger colonies produce different aging phenotypes throughout colony development. Smaller colonies which apply a different foraging strategy than larger colonies produced smaller workers, which in turn have a longer life span as compared to larger workers produced in larger colonies. With the switch to cooperative foraging in growing colonies individual workers become less important for the colony caused by their increasing redundancy. Alternatively a trade of between growth and life span may lead to the results found in this study. A further comparative analysis to study the effect of colony size on life span showed a correlation between queen and worker life span when colony size is taken into account. While neither worker nor queen life span was associated with colony size, the differences between queen and worker life span increase with larger average colony sizes across all eusocial Hymenoptera. As colony size affects both queen and worker life span, I aimed to understand which factors lead to the small colony sizes displayed by some ant species. I therefore analyzed per-capita productivity at different colony sizes of eight cavity dwelling ant species. Most colonies of the study species grew larger than optimal productivity predicted. Larger colony size was shown to increase colony homeostasis, the predictability of future productivity and in turn the survival probability of the colony. I also showed that species that deploy an individual foraging mode may circumvent the density dependent decline in foraging success by splitting the colony to several nest sites.