2 resultados para satellite
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Vegetation-cycles are of general interest for many applications. Be it for harvest-predictions, global monitoring of climate-change or as input to atmospheric models.rnrnCommon Vegetation Indices use the fact that for vegetation the difference between Red and Near Infrared reflection is higher than in any other material on Earth’s surface. This gives a very high degree of confidence for vegetation-detection.rnrnThe spectrally resolving data from the GOME and SCIAMACHY satellite-instrumentsrnprovide the chance to analyse finer spectral features throughout the Red and Near Infrared spectrum using Differential Optical Absorption Spectroscopy (DOAS). Although originally developed to retrieve information on atmospheric trace gases, we use it to gain information on vegetation. Another advantage is that this method automatically corrects for changes in the atmosphere. This renders the vegetation-information easily comparable over long time-spans.rnThe first results using previously available reference spectra were encouraging, but also indicated substantial limitations of the available reflectance spectra of vegetation. This was the motivation to create new and more suitable vegetation reference spectra within this thesis.rnThe set of reference spectra obtained is unique in its extent and also with respect to its spectral resolution and the quality of the spectral calibration. For the first time, this allowed a comprehensive investigation of the high-frequency spectral structures of vegetation reflectance and of their dependence on the viewing geometry.rnrnThe results indicate that high-frequency reflectance from vegetation is very complex and highly variable. While this is an interesting finding in itself, it also complicates the application of the obtained reference spectra to the spectral analysis of satellite observations.rnrnThe new set of vegetation reference spectra created in this thesis opens new perspectives for research. Besides refined satellite analyses, these spectra might also be used for applications on other platforms such as aircraft. First promising studies have been presented in this thesis, but the full potential for the remote sensing of vegetation from satellite (or aircraft) could bernfurther exploited in future studies.
Resumo:
Satellite image classification involves designing and developing efficient image classifiers. With satellite image data and image analysis methods multiplying rapidly, selecting the right mix of data sources and data analysis approaches has become critical to the generation of quality land-use maps. In this study, a new postprocessing information fusion algorithm for the extraction and representation of land-use information based on high-resolution satellite imagery is presented. This approach can produce land-use maps with sharp interregional boundaries and homogeneous regions. The proposed approach is conducted in five steps. First, a GIS layer - ATKIS data - was used to generate two coarse homogeneous regions, i.e. urban and rural areas. Second, a thematic (class) map was generated by use of a hybrid spectral classifier combining Gaussian Maximum Likelihood algorithm (GML) and ISODATA classifier. Third, a probabilistic relaxation algorithm was performed on the thematic map, resulting in a smoothed thematic map. Fourth, edge detection and edge thinning techniques were used to generate a contour map with pixel-width interclass boundaries. Fifth, the contour map was superimposed on the thematic map by use of a region-growing algorithm with the contour map and the smoothed thematic map as two constraints. For the operation of the proposed method, a software package is developed using programming language C. This software package comprises the GML algorithm, a probabilistic relaxation algorithm, TBL edge detector, an edge thresholding algorithm, a fast parallel thinning algorithm, and a region-growing information fusion algorithm. The county of Landau of the State Rheinland-Pfalz, Germany was selected as a test site. The high-resolution IRS-1C imagery was used as the principal input data.