2 resultados para retrieval time
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Die Molekularbiologie von Menschen ist ein hochkomplexes und vielfältiges Themengebiet, in dem in vielen Bereichen geforscht wird. Der Fokus liegt hier insbesondere auf den Bereichen der Genomik, Proteomik, Transkriptomik und Metabolomik, und Jahre der Forschung haben große Mengen an wertvollen Daten zusammengetragen. Diese Ansammlung wächst stetig und auch für die Zukunft ist keine Stagnation absehbar. Mittlerweile aber hat diese permanente Informationsflut wertvolles Wissen in unüberschaubaren, digitalen Datenbergen begraben und das Sammeln von forschungsspezifischen und zuverlässigen Informationen zu einer großen Herausforderung werden lassen. Die in dieser Dissertation präsentierte Arbeit hat ein umfassendes Kompendium von humanen Geweben für biomedizinische Analysen generiert. Es trägt den Namen medicalgenomics.org und hat diverse biomedizinische Probleme auf der Suche nach spezifischem Wissen in zahlreichen Datenbanken gelöst. Das Kompendium ist das erste seiner Art und sein gewonnenes Wissen wird Wissenschaftlern helfen, einen besseren systematischen Überblick über spezifische Gene oder funktionaler Profile, mit Sicht auf Regulation sowie pathologische und physiologische Bedingungen, zu bekommen. Darüber hinaus ermöglichen verschiedene Abfragemethoden eine effiziente Analyse von signalgebenden Ereignissen, metabolischen Stoffwechselwegen sowie das Studieren der Gene auf der Expressionsebene. Die gesamte Vielfalt dieser Abfrageoptionen ermöglicht den Wissenschaftlern hoch spezialisierte, genetische Straßenkarten zu erstellen, mit deren Hilfe zukünftige Experimente genauer geplant werden können. Infolgedessen können wertvolle Ressourcen und Zeit eingespart werden, bei steigenden Erfolgsaussichten. Des Weiteren kann das umfassende Wissen des Kompendiums genutzt werden, um biomedizinische Hypothesen zu generieren und zu überprüfen.
Resumo:
Zeitreihen sind allgegenwärtig. Die Erfassung und Verarbeitung kontinuierlich gemessener Daten ist in allen Bereichen der Naturwissenschaften, Medizin und Finanzwelt vertreten. Das enorme Anwachsen aufgezeichneter Datenmengen, sei es durch automatisierte Monitoring-Systeme oder integrierte Sensoren, bedarf außerordentlich schneller Algorithmen in Theorie und Praxis. Infolgedessen beschäftigt sich diese Arbeit mit der effizienten Berechnung von Teilsequenzalignments. Komplexe Algorithmen wie z.B. Anomaliedetektion, Motivfabfrage oder die unüberwachte Extraktion von prototypischen Bausteinen in Zeitreihen machen exzessiven Gebrauch von diesen Alignments. Darin begründet sich der Bedarf nach schnellen Implementierungen. Diese Arbeit untergliedert sich in drei Ansätze, die sich dieser Herausforderung widmen. Das umfasst vier Alignierungsalgorithmen und ihre Parallelisierung auf CUDA-fähiger Hardware, einen Algorithmus zur Segmentierung von Datenströmen und eine einheitliche Behandlung von Liegruppen-wertigen Zeitreihen.rnrnDer erste Beitrag ist eine vollständige CUDA-Portierung der UCR-Suite, die weltführende Implementierung von Teilsequenzalignierung. Das umfasst ein neues Berechnungsschema zur Ermittlung lokaler Alignierungsgüten unter Verwendung z-normierten euklidischen Abstands, welches auf jeder parallelen Hardware mit Unterstützung für schnelle Fouriertransformation einsetzbar ist. Des Weiteren geben wir eine SIMT-verträgliche Umsetzung der Lower-Bound-Kaskade der UCR-Suite zur effizienten Berechnung lokaler Alignierungsgüten unter Dynamic Time Warping an. Beide CUDA-Implementierungen ermöglichen eine um ein bis zwei Größenordnungen schnellere Berechnung als etablierte Methoden.rnrnAls zweites untersuchen wir zwei Linearzeit-Approximierungen für das elastische Alignment von Teilsequenzen. Auf der einen Seite behandeln wir ein SIMT-verträgliches Relaxierungschema für Greedy DTW und seine effiziente CUDA-Parallelisierung. Auf der anderen Seite führen wir ein neues lokales Abstandsmaß ein, den Gliding Elastic Match (GEM), welches mit der gleichen asymptotischen Zeitkomplexität wie Greedy DTW berechnet werden kann, jedoch eine vollständige Relaxierung der Penalty-Matrix bietet. Weitere Verbesserungen umfassen Invarianz gegen Trends auf der Messachse und uniforme Skalierung auf der Zeitachse. Des Weiteren wird eine Erweiterung von GEM zur Multi-Shape-Segmentierung diskutiert und auf Bewegungsdaten evaluiert. Beide CUDA-Parallelisierung verzeichnen Laufzeitverbesserungen um bis zu zwei Größenordnungen.rnrnDie Behandlung von Zeitreihen beschränkt sich in der Literatur in der Regel auf reellwertige Messdaten. Der dritte Beitrag umfasst eine einheitliche Methode zur Behandlung von Liegruppen-wertigen Zeitreihen. Darauf aufbauend werden Distanzmaße auf der Rotationsgruppe SO(3) und auf der euklidischen Gruppe SE(3) behandelt. Des Weiteren werden speichereffiziente Darstellungen und gruppenkompatible Erweiterungen elastischer Maße diskutiert.