2 resultados para renewable materials

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wurde der nachwachsende Rohstoff Weizenstroh für die Produktion des Biopolymers Polyhydroxybuttersäure genutzt. Als Lignocellulose enthält Weizenstroh einen hohen Anteil an Glucose und Xylose in Form von Cellulose und Hemicellulose. Eine Gewinnung ist aufgrund der komplexen Struktur mit Lignin als dritte Hauptkomponente nur durch eine Vorbehandlung möglich. Hierzu wurde ein thermochemisches Vorbehandlungsverfahren im halbtechnischen (125 l Reaktor) und technisch (425 l Reaktor) Maßstab mit verdünnter Salpetersäure (bis 1 % v/v) etabliert und hinsichtlich verschiedener Versuchsparameter (Behandlungstemperatur, Säure-Konzentration, etc.) optimiert. Auf eine mechanische Vorbehandlung wurde verzichtet. Danach erfolgte eine enzymatische Hydrolyse der vorbehandelten Biomasse. Der PHB-Produzent Cupriavidus necator DSM 545 wurde eingesetzt, um aus den freigesetzten Zuckern PHB zu synthetisieren. rnDurch die Optimierung der Vorbehandlung konnten bis zu 90 % der Glucose und 82 % der Xylose nach der enzymatischen Hydrolyse aus dem Stroh als Monomere und Oligomere freigesetzt werden. Außerdem wurde eine erfolgreiche Überführung des Vorbehandlungsprozesses in den 425 l Reaktor demonstriert. In den gewonnenen Zucker-Hydrolysaten konnten hohe Zelldichten und PHB-Gehalte mit bis zu 38 % erreicht werden. Eine vorherige kostenintensive Reinigung der Hydrolysate war nicht nötig. Zusätzlich konnte gezeigt werden, dass die Reststoffe nach der enzymatischen Hydrolyse, Zellkultur und PHB-Extraktion ausreichendes Potential für eine Biogas-Produktion besitzen. rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In dieser Dissertation wird die Ladungsträgergeneration und -rekombination in neuen polymeren Absorbermaterialien für organische Solarzellen untersucht. Das Verständnis dieser Prozesse ist wesentlich für die Entwicklung neuer photoaktiver Materialsysteme, die hohe Effizienzen erzielen und organische Solarzellen konkurrenzfähig im Bereich der erneuerbaren Energien machen. Experimentell verwendet diese Arbeit hauptsächlich die Methode der transienten Absorptionsspektroskopie, die sich für die Untersuchung photophysikalischer Prozesse auf einer Zeitskala von 100 fs bis 1 ms als sehr leistungsfähig erweist. Des Weiteren wird eine soft-modeling Methode vorgestellt, die es ermöglicht, photophysikalische Prozesse aus einer gemessenen transienten Absorptions-Datenmatrix zu bestimmen, wenn wenig a priori Kenntnisse der Reaktionskinetiken vorhanden sind. Drei unterschiedliche Donor:Akzeptor-Systeme werden untersucht; jedes dieser Systeme stellt eine andere Herangehensweise zur Optimierung der Materialien dar in Bezug auf Lichtabsorption über einen breiten Wellenlängenbereich, effiziente Ladungstrennung und schnellen Ladungstransport. Zuerst wird ein Terpolymer untersucht, das aus unterschiedlichen Einheiten für die Lichtabsorption und den Ladungstransport besteht. Es wird gezeigt, dass es möglich ist, den Fluss angeregter Zustände vom Chromophor auf die Transporteinheit zu leiten. Im zweiten Teil wird der Einfluss von Kristallinität auf die freie Ladungsträgergeneration mit einer Folge von ternären Mischungen, die unterschiedliche Anteile an amorphem und semi-kristallinem Polymer enthalten, untersucht. Dabei zeigt es sich, dass mit steigendem amorphen Polymeranteil sowohl der Anteil der geminalen Ladungsträgerrekombination erhöht als auch die nicht-geminale Rekombination schneller ist. Schlussendlich wird ein System untersucht, in dem sowohl Donor als auch Akzeptor Polymere sind, was zu verbesserten Absorptionseigenschaften führt. Die Rekombination von Ladungstransferzuständen auf der unter 100 ps Zeitskala stellt hier den hauptsächliche Verlustkanal dar, da freie Ladungsträger nur an Grenzflächen erzeugt werden können, an denen Donor und Akzeptor face-to-face zueinander orientiert sind. Darüber hinaus wird festgestellt, dass weitere 40-50% der Ladungsträger durch die Rekombination von Grenzflächenzuständen verloren gehen, die aus mobilen Ladungsträgern geminal gebildet werden.