4 resultados para reconstruction algorithms
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In der vorliegenden Arbeit wird die Faktorisierungsmethode zur Erkennung von Inhomogenitäten der Leitfähigkeit in der elektrischen Impedanztomographie auf unbeschränkten Gebieten - speziell der Halbebene bzw. dem Halbraum - untersucht. Als Lösungsräume für das direkte Problem, d.h. die Bestimmung des elektrischen Potentials zu vorgegebener Leitfähigkeit und zu vorgegebenem Randstrom, führen wir gewichtete Sobolev-Räume ein. In diesen wird die Existenz von schwachen Lösungen des direkten Problems gezeigt und die Gültigkeit einer Integraldarstellung für die Lösung der Laplace-Gleichung, die man bei homogener Leitfähigkeit erhält, bewiesen. Mittels der Faktorisierungsmethode geben wir eine explizite Charakterisierung von Einschlüssen an, die gegenüber dem Hintergrund eine sprunghaft erhöhte oder erniedrigte Leitfähigkeit haben. Damit ist zugleich für diese Klasse von Leitfähigkeiten die eindeutige Rekonstruierbarkeit der Einschlüsse bei Kenntnis der lokalen Neumann-Dirichlet-Abbildung gezeigt. Die mittels der Faktorisierungsmethode erhaltene Charakterisierung der Einschlüsse haben wir in ein numerisches Verfahren umgesetzt und sowohl im zwei- als auch im dreidimensionalen Fall mit simulierten, teilweise gestörten Daten getestet. Im Gegensatz zu anderen bekannten Rekonstruktionsverfahren benötigt das hier vorgestellte keine Vorabinformation über Anzahl und Form der Einschlüsse und hat als nicht-iteratives Verfahren einen vergleichsweise geringen Rechenaufwand.
Resumo:
Die Elektrische Impedanztomographie soll als kostengünstige und nebenwirkungsfreie Tomographiemethode in der medizinischen Diagnostik, z. B. in der Mammographie dienen. Mit der EIT läßt sich Krebsgewebe von gesundem Gewebe unterscheiden, da es eine signifikant erhöhte Leitfähigkeit aufweist. Damit kann die EIT als Ergänzung zu den klassischen Diagnoseverfahren dienen. So ist z.B. bei jungen Frauen mit einem dichteren Fettgewebe die Identifizierung eines Mammakarzinoms mit der Röntgentomographie nicht immer möglich. Ziel dieser Arbeit war es, einen Prototypen für die Impedanztomographie zu entwickeln und mögliche Anwendungen zu testen. Der Tomograph ist in Zusammenarbeit mit Dr. K.H.Georgi gebaut worden. Der Tomograph erlaubt es niederohmige, Wechselströme an Elektroden auf der Körperoberfläche einzuspeisen. Die Potentiale können an diesen Elektroden programmierbar vorgegeben werden. Weitere hochohmige Elektroden dienen zur Potentialmessung. Um den Hautwiderstand zu überbrücken, werden Wechselstromfrequenzen von 20-100 kHz eingesetzt. Mit der Möglichkeit der Messung von Strom und Potential auf unterschiedlichen Elektroden kann man das Problem des nur ungenau bekannten Hautwiderstandes umgehen. Prinzipiell ist es mit dem Mainzer EIT System möglich, 100 Messungen in der Sekunde durchzuführen. Auf der Basis von mit dem Mainzer EIT gewonnenen Daten sollten unterschiedliche Rekonstruktionsalgorithmen getestet und weiterentwickelt werden. In der Vergangenheit sind verschiedene Rekonstruktionsalgorithmen für das mathematisch schlecht gestellte EIT Problem betrachtet worden. Sie beruhen im Wesentlichen auf zwei Strategien: Die Linearisierung und iterative Lösung des Problems und Gebietserkennungsmethoden. Die iterativen Verfahren wurden von mir dahingehend modifiziert, dass Leitfähigkeitserhöhungen und Leitfähigkeitserniedrigungen gleichberechtigt behandelt werden können. Für den modifizierten Algorithmus wurden zwei verschiedene Rekonstruktionsalgorithmen programmiert und mit synthetischen Daten getestet. Zum einen die Rekonstruktion über die approximative Inverse, zum anderen eine Rekonstruktion mit einer Diskretisierung. Speziell für die Rekonstruktion mittels Diskretisierung wurde eine Methode entwickelt, mit der zusätzliche Informationen in der Rekonstruktion berücksichtigt werden können, was zu einer Verbesserung der Rekonstruktion beiträgt. Der Gebietserkennungsalgorithmus kann diese Zusatzinformationen liefern. In der Arbeit wurde ein neueres Verfahren für die Gebietserkennung derart modifiziert, dass eine Rekonstruktion auch für getrennte Strom- und Spannungselektroden möglich wurde. Mit Hilfe von Differenzdaten lassen sich ausgezeichnete Rekonstruktionen erzielen. Für die medizinischen Anwendungen sind aber Absolutmessungen nötig, d.h. ohne Leermessung. Der erwartende Effekt einer Inhomogenität in der Leitfähigkeit ist sehr klein und als Differenz zweier grosser Zahlen sehr schwierig zu bestimmen. Die entwickelten Algorithmen kommen auch gut mit Absolutdaten zurecht.
Resumo:
Die vorliegende Arbeit untersucht das inverse Hindernisproblem der zweidimensionalen elektrischen Impedanztomographie (EIT) mit Rückstreudaten. Wir präsentieren und analysieren das mathematische Modell für Rückstreudaten, diskutieren das inverse Problem für einen einzelnen isolierenden oder perfekt leitenden Einschluss und stellen zwei Rekonstruktionsverfahren für das inverse Hindernisproblem mit Rückstreudaten vor. Ziel des inversen Hindernisproblems der EIT ist es, Inhomogenitäten (sogenannte Einschlüsse) der elektrischen Leitfähigkeit eines Körpers aus Strom-Spannungs-Messungen an der Körperoberfläche zu identifizieren. Für die Messung von Rückstreudaten ist dafür nur ein Paar aus an der Körperoberfläche nahe zueinander angebrachten Elektroden nötig, das zur Datenerfassung auf der Oberfläche entlang bewegt wird. Wir stellen ein mathematisches Modell für Rückstreudaten vor und zeigen, dass Rückstreudaten die Randwerte einer außerhalb der Einschlüsse holomorphen Funktion sind. Auf dieser Grundlage entwickeln wir das Konzept des konvexen Rückstreuträgers: Der konvexe Rückstreuträger ist eine Teilmenge der konvexen Hülle der Einschlüsse und kann daher zu deren Auffindung dienen. Wir stellen einen Algorithmus zur Berechnung des konvexen Rückstreuträgers vor und demonstrieren ihn an numerischen Beispielen. Ferner zeigen wir, dass ein einzelner isolierender Einschluss anhand seiner Rückstreudaten eindeutig identifizierbar ist. Der Beweis dazu beruht auf dem Riemann'schen Abbildungssatz für zweifach zusammenhängende Gebiete und dient als Grundlage für einen Rekonstruktionsalgorithmus, dessen Leistungsfähigkeit wir an verschiedenen Beispielen demonstrieren. Ein perfekt leitender Einschluss ist hingegen nicht immer aus seinen Rückstreudaten rekonstruierbar. Wir diskutieren, in welchen Fällen die eindeutige Identifizierung fehlschlägt und zeigen Beispiele für unterschiedliche perfekt leitende Einschlüsse mit gleichen Rückstreudaten.
Resumo:
Die Produktion von Hyperkernen wurde in peripheren Schwerionenreaktionen untersucht, bei denen eine Kohlenstofffolie mit $^6$Li Projektilen mit einer Strahlenergie von $2 A$~GeV bestrahlt wurde. Es konnten klare Signale f{"{u}}r $Lambda$, $^3_{Lambda}$H, $^4_{Lambda}$H in deren jeweiligen invarianten Massenverteilungen aus Mesonenzerfall beobachtet werden.rnrnIn dieser Arbeit wird eine unabh{"{a}}ngige Datenauswertung vorgelegt, die eine Verifizierung fr"{u}herer Ergebnisse der HypHI Kollaboration zum Ziel hatte. Zu diesem Zweck wurde eine neue Track-Rekonstruktion, basierend auf einem Kalman-Filter-Ansatz, und zwei unterschiedliche Algorithmen zur Rekonstruktion sekund"{a}rer Vertices entwickelt.rn%-Rekonstruktionsalgorithmen .rnrnDie invarianten Massen des $Lambda$-Hyperon und der $^3_{Lambda}$H- und $^4_{Lambda}$H-Hyperkerne wurden mit $1109.6 pm 0.4$, $2981.0 pm 0.3$ und $3898.1 pm 0.7$~MeV$/c^2$ und statistischen Signifikanzen von $9.8sigma$, $12.8sigma$ beziehungsweise $7.3sigma$ bestimmt. Die in dieser Arbeit erhaltenen Ergebnisse stimmen mit der fr{"{u}}heren Auswertung {"{u}}berein.rnrnDas Ausbeutenverh{"{a}}ltnis der beiden Hyperkerne wurde als $N(^3_{Lambda}$H)/$N(^4_{Lambda}$H)$ sim 3$ bestimmt. Das deutet darauf hin, dass der Produktionsmechanismus f{"{u}}r Hyperkerne in Schwerionen-induzierten Reaktionen im Projektil-Rapidit{"{a}}tsbereich nicht allein durch einen Koaleszenzmechanismus beschrieben werden kann, sondern dass auch sekund{"{a}}re Pion-/Kaon-induzierte Reaktionen und Fermi-Aufbruch involviert sind.rn