2 resultados para random number generator

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this treatise we consider finite systems of branching particles where the particles move independently of each other according to d-dimensional diffusions. Particles are killed at a position dependent rate, leaving at their death position a random number of descendants according to a position dependent reproduction law. In addition particles immigrate at constant rate (one immigrant per immigration time). A process with above properties is called a branching diffusion withimmigration (BDI). In the first part we present the model in detail and discuss the properties of the BDI under our basic assumptions. In the second part we consider the problem of reconstruction of the trajectory of a BDI from discrete observations. We observe positions of the particles at discrete times; in particular we assume that we have no information about the pedigree of the particles. A natural question arises if we want to apply statistical procedures on the discrete observations: How can we find couples of particle positions which belong to the same particle? We give an easy to implement 'reconstruction scheme' which allows us to redraw or 'reconstruct' parts of the trajectory of the BDI with high accuracy. Moreover asymptotically the whole path can be reconstructed. Further we present simulations which show that our partial reconstruction rule is tractable in practice. In the third part we study how the partial reconstruction rule fits into statistical applications. As an extensive example we present a nonparametric estimator for the diffusion coefficient of a BDI where the particles move according to one-dimensional diffusions. This estimator is based on the Nadaraya-Watson estimator for the diffusion coefficient of one-dimensional diffusions and it uses the partial reconstruction rule developed in the second part above. We are able to prove a rate of convergence of this estimator and finally we present simulations which show that the estimator works well even if we leave our set of assumptions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wir betrachten Systeme von endlich vielen Partikeln, wobei die Partikel sich unabhängig voneinander gemäß eindimensionaler Diffusionen [dX_t = b(X_t),dt + sigma(X_t),dW_t] bewegen. Die Partikel sterben mit positionsabhängigen Raten und hinterlassen eine zufällige Anzahl an Nachkommen, die sich gemäß eines Übergangskerns im Raum verteilen. Zudem immigrieren neue Partikel mit einer konstanten Rate. Ein Prozess mit diesen Eigenschaften wird Verzweigungsprozess mit Immigration genannt. Beobachten wir einen solchen Prozess zu diskreten Zeitpunkten, so ist zunächst nicht offensichtlich, welche diskret beobachteten Punkte zu welchem Pfad gehören. Daher entwickeln wir einen Algorithmus, um den zugrundeliegenden Pfad zu rekonstruieren. Mit Hilfe dieses Algorithmus konstruieren wir einen nichtparametrischen Schätzer für den quadrierten Diffusionskoeffizienten $sigma^2(cdot),$ wobei die Konstruktion im Wesentlichen auf dem Auffüllen eines klassischen Regressionsschemas beruht. Wir beweisen Konsistenz und einen zentralen Grenzwertsatz.