6 resultados para radial glia

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Im Rahmen dieser Arbeit wurden transgene Mausmodelle hergestellt, die eine weitere Aufklärung der Rolle des Transkriptionsfaktors Pax6 bei der Wanderung von Nervenzellen ermöglichen, sowie ein Kultursystem zur Darstellung embryonaler Wanderungen außerhalb des Mutterleibs entwickelt.Bei der YAC-transgenen Mäuselinie PhPax6-taulacZ wird das Reportergen taulacZ unter der Kontrolle des Pax6-Promotors exprimiert. Dadurch ist dort, wo Pax6 im Zellkern vorliegt, der Rest der Zelle über seine gesamte Ausdehnung mit der vom taulacZ-Transgen kodierten tau-b-Galactosidase markiert. Das räumlich-zeitliche Expressionsmuster von Pax6 und dem Transgen taulacZ wurde detailliert untersucht. Dabei wurde eine hohe Übereinstimmung festgestellt. Basierend auf der Darstellung der Zellen in ihrer gesamten Ausdehnung, die durch das taulacZ-Transgen erstmals möglich ist, wurde eine Klassifizierung Pax6-positiver Zelltypen vorgenommen. Zunächst wird Pax6 in Neuroepithelzellen, später in radialen Gliazellen exprimiert.Mit der zweiten transgenen Mäuselinie, PhPax6-tTA, wurde ein Werkzeug hergestellt, das die gezielte und hoch spezifische Expression von beliebigen Transgenen in Pax6-exprimierenden Zellen ermöglicht. In Pax6-positive Zellen der Medulla wurde das Grün Fluoreszierende Protein (GFP) eingeführt und das Wanderungsverhalten in vitro über mehrere Tage dargestellt. Erstmals können mit dieser Linie beliebige Expressionskonstrukte gezielt, hocheffizient und schnell in wandernde Neurone eingebracht werden, ohne störende Hinter-grundexpression in anderen Zellen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Funktion von Dystroglycan in der Entwicklung des zentralen Nervensystems Der DAG ist ein oligomerer Proteinkomplex, der in den Muskelfasern die extrazelluläre Matrix mit dem Zytoskelett verbindet und dadurch der Muskulatur die mechanische Stabilität bei der Kontraktion verleiht. Mutationen des DAG sind die genetische Grundlage für verschiedene Formen von muskulären Dystrophien. Muskuläre Dystrophien sind Krankheiten, die neben einer Degeneration der Muskulatur auch verschiedene ZNS-Defekte aufweisen. Die Funktion des DAG im ZNS ist bisher unbekannt. Um seine Funktion im ZNS zu analysieren, wurde Huhn-Dystroglycan, eine zentrale Komponente des DAG, kloniert. Dystroglycan besteht aus dem extrazellulären Matrixprotein alpha-Dystroglycan und dem transmembranen beta-Dystroglycan. Beide Proteine werden vom selben Gen codiert und posttranslational gespalten. Die Huhn-Dystroglycan-Sequenz ist sehr homolog zu anderen Spezies. Antikörper hergestellt gegen die Interaktionsdomänen von alpha- und beta-Dystroglycan, wurden verwendet um die Interaktion von Dystroglycan selektiv an der Grenzfläche zwischen Gliazellendfüßen und Basallamina in der Retina zu stören. Die Antikörper wurden in vivo intravitreal in Augen von Hühnerembryoanen der Stadien E6 bis E10 injiziert. Die Injektion der Antikörper und entsprechender Fab-Fragmente führten zu schweren Veränderungen in der Retina, unter anderem Hyperproliferation, Auflösung der radialen Struktur der neuroepithelialen Zellen und einer veränderten Schichtung. Diese Ergebnisse deuten darauf hin, daß der DAG am Kontakt der radiären Glizellen zur Basalmembran beteiligt sind.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alpha- und Beta-Dystroglycan, die zentralen Komponenten eines multimeren Dystrophin-assoziierten Proteinkomplexes wurden bislang im Wesentlichen in der Skelettmuskulatur charakterisiert. Dort stellt der DAG eine molekulare Verbindung zwischen dem Aktin-Zytoskelett der Muskelfaser und einer Basalmembran her, die die einzelne Muskelfaser umhüllt. Dystroglycan vermittelt auf diese Weise die mechanische Festigkeit der Muskelfasern während der Kontraktion. Außerdem dient der DAG als Gerüst für die Anlagerung von Proteinen. Mutationen in den strukturgebenden oder signaltransduzierenden Proteinen des DAG verursachen Muskeldystrophie. Besonders schwere Muskeldystrophien werden durch Mutationen hervorgerufen, die eine veränderte Glykosylierung von Dystroglycan und damit eine verminderte Bindung von alpha-Dystroglycan an Matrixproteine verursachen. Dies führt zu einer Beeinträchtigung der Basalmembranbiosynthese sowie sich daraus ergebende Störungen in der Migration, Schichtung und Differenzierung von Nervenzellen im ZNS. Welche Rolle Dystroglycan im sich entwickelnden ZNS spielt, sollte in dieser Arbeit an der Hühnerretina untersucht werden. Durch Anwendung der in ovo Elektroporation wurden zwei modifizierte Dystroglycankonstrukte in Neuroepithelzellen transfiziert. Die Überexpression eines verkürtzten Dystroglycanproteins, verursachte eine Abrundung der Neuroepithelzellen. Dies führte zur Hyperproliferation der Zellen deren Folge die Bildung von Verdickungen in der Retina war sowie eine verstärkte Bildung postmitotischer Neurone. Die Elektroporation eines nicht-spaltbaren Dystroglycans, führte im Gegensatz dazu zu einer Abnahme der Anzahl proliferierender und differenzierender Nervenzellen. Als Konsequenz veränderte sich die Orientierung der Axone von retinalen Ganglienzellen. Nach der Überexpression des verkürzten Dystroglycans verloren die Axone ihre zentripetale Orientierung auf den optischen Nerv, während die Elektroporation von Wt-Dystroglycan und nicht-spaltbarem Dystroglycan nur einen gelegentlichen Richtungswechsel der Axone verursachte. Die Daten zeigen, dass Dystroglycan einen entscheidenden Einfluss auf die Proliferation, Differenzierung und Polarität der Neuroepithelzellen ausübt. Dies geschieht vermutlich durch die Vermittlung der Adhäsion des Endfußes von Neuroepithelzellen an die Basalmembran. Die Veränderungen nach der Überexpression der modifizierten Dystroglycankonstrukte liefern möglicherweise eine Erklärung für den ZNS-Phänotyp der sich bei verschiedenen Formen von Muskeldystrophie zeigt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wurde die Funktion von Dystroglycan in jungen und späten Stadien des sich entwickelnden ZNS untersucht. Hierzu wurden Antikörper generiert, die fähig waren, in vivo die Interaktion zwischen a-und b-Dystroglycan zu stören. Die Antikörper oder Fab-Fragmente wurden in das Mesencephalon oder Auge lebender Hühnerembryonen injiziert, um aus den beobachteten Veränderungen die Funktion des DAG zu untersuchen. Die Fab-Fragmentinjektionen führten zu Hyperproliferation, verbunden mit morphologischen Veränderungen der Neuroepithelzellen und Zunahme der Anzahl postmitotischer Neuronen. Ebenso wurde die basale und apikale Polarität von Neuroepithelzellen beeinflusst. Auch die Axonorientierung der tectobulbären Axone wurde durch die Injektionen gestört. In älteren embryonalen Stadien kam es, durch Fab-Fragmentinjektionen in die Augen von Embryonen, zu strukturellen Veränderungen der Retina, verbunden mit einer breiteren Verteilung des DAG, wie auch der Synapsen innerhalb der OPL. Die retinalen Zelltypen, wie Müller-Gliazellen und Stäbchen-Bipolarzellen, waren abgerundet und hatten ihre typische Zellform verloren. Die Ergebnisse dieser Arbeit zeigen, dass Dystroglycan einen entscheidenden Einfluss auf die Proliferation, Migration, Polarität und Differenzierung der Neuroepithelzellen ausübt. Außerdem zeigen diese Daten, dass Dystroglycan nicht nur in der frühen embryonalen ZNS-Entwicklung eine maßgebliche Rolle spielt, sondern auch in späten Stadien. Die Ähnlichkeit der beobachteten Veränderungen nach Fab-Fragmentinjektionen legt nahe, dass einige Veränderungen im ZNS bestimmter Muskeldystrophieformen, durch Beeinflussung der Neuroepithelzellen im sich entwickelnden ZNS, verursacht werden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oligodendrocytes form specialized plasma membrane extensions which spirally enwrap axons, thereby building up the myelin sheath. During myelination, oligodendrocytes produce large amounts of membrane components. Oligodendrocytes can be seen as a complex polarized cell type with two distinct membrane domains, the plasma membrane surrounding the cell body and the myelin membrane. SNARE proteins mediate the fusion of vesicular cargoes with their target membrane. We propose a model in which the major myelin protein PLP is transported by two different pathways. VAMP3 mediates the non-polarized transport of newly synthesized PLP via recycling endosomes to the plasma membrane, while transport of PLP from late endosomes/lysosomes to myelin is controlled by VAMP7. In the second part of the thesis, the role of exosome secretion in glia to axon signaling was studied. Further studies are required to clarify whether VAMP7 also controls exosome secretion. The thesis further focused on putative metabolic effects in the target neurons. Oligodendroglial exosomes showed no obvious influences on neuronal metabolic activity. Analysis of the phosphorylation levels of the neurofilament heavy subunit revealed a decrease in presence of oligodendrocytes, indicating effects of oligodendroglial exosomes on the neuronal cytoskeleton. Finally, candidates for kinases which are possibly activated upon influence of oligodendroglial exosomes and could influence neuronal survival were identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the CNS, myelinating oligodendrocytes and axons form a functional unit based on intimate cell-cell interactions. In addition to axonal insulation serving to increase the conduction velocity of electrical impulses, oligodendrocytes provide trophic support to neurons essential for the long-term functional integrity of axons. The glial signals maintaining axonal functions are just at the beginning to become uncovered. Yet, their determination is highly relevant for all types of demyelinating diseases, where lack of glial support significantly contributes to pathology. rnThe present PhD thesis uncovers exosomes as a novel signaling entity in the CNS by which cargo can be transferred from oligodendrocytes to neurons. Exosomes are small membranous vesicles of endocytic origin, which are released by almost every cell type and have been implicated in intercellular communication. Oligodendrocytes secrete exosomes containing a distinct set of proteins as well as mRNA and microRNA. Intriguingly, oligodendroglial exosome release is stimulated by the neurotransmitter glutamate indicating that neuronal electrical activity controls glial exosome release. In this study, the role of exosomes in neuron-glia communication and their implications on glial support was examined. Cortical neurons internalized and accumulated oligodendroglial exosomes in the neuronal cell soma in a time-dependent manner. Moreover, uptake occurred likewise at the somatodendritic and axonal compartment of the neurons via dynamin and clathrin dependent endocytosis. Intriguingly, neuronal internalization of exosomes resulted in functional retrieval of exosomal cargo in vitro and in vivo upon stereotactic injection of Cre recombinase bearing exosomes. Functional recovery of Cre recombinase from transferred exosomes was indicated by acquired reporter recombination in the target cell. Electrophysiological analysis showed an increased firing rate in neurons exposed to oligodendroglial exosomes. Moreover, microarray analysis revealed differentially expressed genes after exosome treatment, indicating functional implications on neuronal gene expression and activity. rnTaken together, the results of this PhD thesis represent a proof of principle for exosome transmission from oligodendrocytes to neurons suggesting a new route of horizontal transfer in the CNS.rn