8 resultados para pair propagator
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
A path integral simulation algorithm which includes a higher-order Trotter approximation (HOA)is analyzed and compared to an approach which includes the correct quantum mechanical pair interaction (effective Propagator (EPr)). It is found that the HOA algorithmconverges to the quantum limit with increasing Trotter number P as P^{-4}, while the EPr algorithm converges as P^{-2}.The convergence rate of the HOA algorithm is analyzed for various physical systemssuch as a harmonic chain,a particle in a double-well potential, gaseous argon, gaseous helium and crystalline argon. A new expression for the estimator for the pair correlation function in the HOA algorithm is derived. A new path integral algorithm, the hybrid algorithm, is developed.It combines an exact treatment of the quadratic part of the Hamiltonian and thehigher-order Trotter expansion techniques.For the discrete quantum sine-Gordon chain (DQSGC), it is shown that this algorithm works more efficiently than all other improved path integral algorithms discussed in this work. The new simulation techniques developed in this work allow the analysis of theDQSGC and disordered model systems in the highly quantum mechanical regime using path integral molecular dynamics (PIMD)and adiabatic centroid path integral molecular dynamics (ACPIMD).The ground state phonon dispersion relation is calculated for the DQSGC by the ACPIMD method.It is found that the excitation gap at zero wave vector is reduced by quantum fluctuations. Two different phases exist: One phase with a finite excitation gap at zero wave vector, and a gapless phase where the excitation gap vanishes.The reaction of the DQSGC to an external driving force is analyzed at T=0.In the gapless phase the system creeps if a small force is applied, and in the phase with a gap the system is pinned. At a critical force, the systems undergo a depinning transition in both phases and flow is induced. The analysis of the DQSGC is extended to models with disordered substrate potentials. Three different cases are analyzed: Disordered substrate potentials with roughness exponent H=0, H=1/2,and a model with disordered bond length. For all models, the ground state phonon dispersion relation is calculated.
Resumo:
The present state of the theoretical predictions for the hadronic heavy hadron production is not quite satisfactory. The full next-to-leading order (NLO) ${cal O} (alpha_s^3)$ corrections to the hadroproduction of heavy quarks have raised the leading order (LO) ${cal O} (alpha_s^2)$ estimates but the NLO predictions are still slightly below the experimental numbers. Moreover, the theoretical NLO predictions suffer from the usual large uncertainty resulting from the freedom in the choice of renormalization and factorization scales of perturbative QCD.In this light there are hopes that a next-to-next-to-leading order (NNLO) ${cal O} (alpha_s^4)$ calculation will bring theoretical predictions even closer to the experimental data. Also, the dependence on the factorization and renormalization scales of the physical process is expected to be greatly reduced at NNLO. This would reduce the theoretical uncertainty and therefore make the comparison between theory and experiment much more significant. In this thesis I have concentrated on that part of NNLO corrections for hadronic heavy quark production where one-loop integrals contribute in the form of a loop-by-loop product. In the first part of the thesis I use dimensional regularization to calculate the ${cal O}(ep^2)$ expansion of scalar one-loop one-, two-, three- and four-point integrals. The Laurent series of the scalar integrals is needed as an input for the calculation of the one-loop matrix elements for the loop-by-loop contributions. Since each factor of the loop-by-loop product has negative powers of the dimensional regularization parameter $ep$ up to ${cal O}(ep^{-2})$, the Laurent series of the scalar integrals has to be calculated up to ${cal O}(ep^2)$. The negative powers of $ep$ are a consequence of ultraviolet and infrared/collinear (or mass ) divergences. Among the scalar integrals the four-point integrals are the most complicated. The ${cal O}(ep^2)$ expansion of the three- and four-point integrals contains in general classical polylogarithms up to ${rm Li}_4$ and $L$-functions related to multiple polylogarithms of maximal weight and depth four. All results for the scalar integrals are also available in electronic form. In the second part of the thesis I discuss the properties of the classical polylogarithms. I present the algorithms which allow one to reduce the number of the polylogarithms in an expression. I derive identities for the $L$-functions which have been intensively used in order to reduce the length of the final results for the scalar integrals. I also discuss the properties of multiple polylogarithms. I derive identities to express the $L$-functions in terms of multiple polylogarithms. In the third part I investigate the numerical efficiency of the results for the scalar integrals. The dependence of the evaluation time on the relative error is discussed. In the forth part of the thesis I present the larger part of the ${cal O}(ep^2)$ results on one-loop matrix elements in heavy flavor hadroproduction containing the full spin information. The ${cal O}(ep^2)$ terms arise as a combination of the ${cal O}(ep^2)$ results for the scalar integrals, the spin algebra and the Passarino-Veltman decomposition. The one-loop matrix elements will be needed as input in the determination of the loop-by-loop part of NNLO for the hadronic heavy flavor production.
Resumo:
Während das Standardmodell der Elementarteilchenphysik eine konsistente, renormierbare Quantenfeldtheorie dreier der vier bekannten Wechselwirkungen darstellt, bleibt die Quantisierung der Gravitation ein bislang ungelöstes Problem. In den letzten Jahren haben sich jedoch Hinweise ergeben, nach denen metrische Gravitation asymptotisch sicher ist. Das bedeutet, daß sich auch für diese Wechselwirkung eine Quantenfeldtheorie konstruieren läßt. Diese ist dann in einem verallgemeinerten Sinne renormierbar, der nicht mehr explizit Bezug auf die Störungstheorie nimmt. Zudem sagt dieser Zugang, der auf der Wilsonschen Renormierungsgruppe beruht, die korrekte mikroskopische Wirkung der Theorie voraus. Klassisch ist metrische Gravitation auf dem Niveau der Vakuumfeldgleichungen äquivalent zur Einstein-Cartan-Theorie, die das Vielbein und den Spinzusammenhang als fundamentale Variablen verwendet. Diese Theorie besitzt allerdings mehr Freiheitsgrade, eine größere Eichgruppe, und die zugrundeliegende Wirkung ist von erster Ordnung. Alle diese Eigenschaften erschweren eine zur metrischen Gravitation analoge Behandlung.rnrnIm Rahmen dieser Arbeit wird eine dreidimensionale Trunkierung von der Art einer verallgemeinerten Hilbert-Palatini-Wirkung untersucht, die neben dem Laufen der Newton-Konstante und der kosmologischen Konstante auch die Renormierung des Immirzi-Parameters erfaßt. Trotz der angedeuteten Schwierigkeiten war es möglich, das Spektrum des freien Hilbert-Palatini-Propagators analytisch zu berechnen. Auf dessen Grundlage wird eine Flußgleichung vom Propertime-Typ konstruiert. Zudem werden geeignete Eichbedingungen gewählt und detailliert analysiert. Dabei macht die Struktur der Eichgruppe eine Kovariantisierung der Eichtransformationen erforderlich. Der resultierende Fluß wird für verschiedene Regularisierungsschemata und Eichparameter untersucht. Dies liefert auch im Einstein-Cartan-Zugang berzeugende Hinweise auf asymptotische Sicherheit und damit auf die mögliche Existenz einer mathematisch konsistenten und prädiktiven fundamentalen Quantentheorie der Gravitation. Insbesondere findet man ein Paar nicht-Gaußscher Fixpunkte, das Anti-Screening aufweist. An diesen sind die Newton-Konstante und die kosmologische Konstante jeweils relevante Kopplungen, wohingegen der Immirzi-Parameter an einem Fixpunkt irrelevant und an dem anderen relevant ist. Zudem ist die Beta-Funktion des Immirzi-Parameters von bemerkenswert einfacher Form. Die Resultate sind robust gegenüber Variationen des Regularisierungsschemas. Allerdings sollten zukünftige Untersuchungen die bestehenden Eichabhängigkeiten reduzieren.
Resumo:
In this thesis we investigate several phenomenologically important properties of top-quark pair production at hadron colliders. We calculate double differential cross sections in two different kinematical setups, pair invariant-mass (PIM) and single-particle inclusive (1PI) kinematics. In pair invariant-mass kinematics we are able to present results for the double differential cross section with respect to the invariant mass of the top-quark pair and the top-quark scattering angle. Working in the threshold region, where the pair invariant mass M is close to the partonic center-of-mass energy sqrt{hat{s}}, we are able to factorize the partonic cross section into different energy regions. We use renormalization-group (RG) methods to resum large threshold logarithms to next-to-next-to-leading-logarithmic (NNLL) accuracy. On a technical level this is done using effective field theories, such as heavy-quark effective theory (HQET) and soft-collinear effective theory (SCET). The same techniques are applied when working in 1PI kinematics, leading to a calculation of the double differential cross section with respect to transverse-momentum pT and the rapidity of the top quark. We restrict the phase-space such that only soft emission of gluons is possible, and perform a NNLL resummation of threshold logarithms. The obtained analytical expressions enable us to precisely predict several observables, and a substantial part of this thesis is devoted to their detailed phenomenological analysis. Matching our results in the threshold regions to the exact ones at next-to-leading order (NLO) in fixed-order perturbation theory, allows us to make predictions at NLO+NNLL order in RG-improved, and at approximate next-to-next-to-leading order (NNLO) in fixed order perturbation theory. We give numerical results for the invariant mass distribution of the top-quark pair, and for the top-quark transverse-momentum and rapidity spectrum. We predict the total cross section, separately for both kinematics. Using these results, we analyze subleading contributions to the total cross section in 1PI and PIM originating from power corrections to the leading terms in the threshold expansions, and compare them to previous approaches. We later combine our PIM and 1PI results for the total cross section, this way eliminating uncertainties due to these corrections. The combined predictions for the total cross section are presented as a function of the top-quark mass in the pole, the minimal-subtraction (MS), and the 1S mass scheme. In addition, we calculate the forward-backward (FB) asymmetry at the Tevatron in the laboratory, and in the ttbar rest frames as a function of the rapidity and the invariant mass of the top-quark pair at NLO+NNLL. We also give binned results for the asymmetry as a function of the invariant mass and the rapidity difference of the ttbar pair, and compare those to recent measurements. As a last application we calculate the charge asymmetry at the LHC as a function of a lower rapidity cut-off for the top and anti-top quarks.
Resumo:
In hadronischen Kollisionen entstehen bei einem Großteil der Ereignisse mit einem hohen Impulsübertrag Paare aus hochenergetischen Jets. Deren Produktion und Eigenschaften können mit hoher Genauigkeit durch die Störungstheorie in der Quantenchromodynamik (QCD) vorhergesagt werden. Die Produktion von \textit{bottom}-Quarks in solchen Kollisionen kann als Maßstab genutzt werden, um die Vorhersagen der QCD zu testen, da diese Quarks die Dynamik des Produktionsprozesses bei Skalen wieder spiegelt, in der eine Störungsrechnung ohne Einschränkungen möglich ist. Auf Grund der hohen Masse von Teilchen, die ein \textit{bottom}-Quark enthalten, erhält der gemessene, hadronische Zustand den größten Teil der Information von dem Produktionsprozess der Quarks. Weil sie eine große Produktionsrate besitzen, spielen sie und ihre Zerfallsprodukte eine wichtige Rolle als Untergrund in vielen Analysen, insbesondere in Suchen nach neuer Physik. In ihrer herausragenden Stellung in der dritten Quark-Generation könnten sich vermehrt Zeichen im Vergleich zu den leichteren Quarks für neue Phänomene zeigen. Daher ist die Untersuchung des Verhältnisses zwischen der Produktion von Jets, die solche \textit{bottom}-Quarks enthalten, auch bekannt als $b$-Jets, und aller nachgewiesener Jets ein wichtiger Indikator für neue massive Objekte. In dieser Arbeit werden die Produktionsrate und die Korrelationen von Paaren aus $b$-Jets bestimmt und nach ersten Hinweisen eines neuen massiven Teilchens, das bisher nicht im Standard-Modell enthalten ist, in dem invarianten Massenspektrum der $b$-Jets gesucht. Am Large Hadron Collider (LHC) kollidieren zwei Protonenstrahlen bei einer Schwerpunktsenergie von $\sqrt s = 7$ TeV, und es werden viele solcher Paare aus $b$-Jets produziert. Diese Analyse benutzt die aufgezeichneten Kollisionen des ATLAS-Detektors. Die integrierte Luminosität der verwendbaren Daten beläuft sich auf 34~pb$^{-1}$. $b$-Jets werden mit Hilfe ihrer langen Lebensdauer und den rekonstruierten, geladenen Zerfallsprodukten identifiziert. Für diese Analyse müssen insbesondere die Unterschiede im Verhalten von Jets, die aus leichten Objekten wie Gluonen und leichten Quarks hervorgehen, zu diesen $b$-Jets beachtet werden. Die Energieskala dieser $b$-Jets wird untersucht und die zusätzlichen Unsicherheit in der Energiemessung der Jets bestimmt. Effekte bei der Jet-Rekonstruktion im Detektor, die einzigartig für $b$-Jets sind, werden studiert, um letztlich diese Messung unabhängig vom Detektor und auf Niveau der Hadronen auswerten zu können. Hiernach wird die Messung zu Vorhersagen auf nächst-zu-führender Ordnung verglichen. Dabei stellt sich heraus, dass die Vorhersagen in Übereinstimmung zu den aufgenommenen Daten sind. Daraus lässt sich schließen, dass der zugrunde liegende Produktionsmechanismus auch in diesem neu erschlossenen Energiebereich am LHC gültig ist. Jedoch werden auch erste Hinweise auf Mängel in der Beschreibung der Eigenschaften dieser Ereignisse gefunden. Weiterhin können keine Anhaltspunkte für eine neue Resonanz, die in Paare aus $b$-Jets zerfällt, in dem invarianten Massenspektrum bis etwa 1.7~TeV gefunden werden. Für das Auftreten einer solchen Resonanz mit einer Gauß-förmigen Massenverteilung werden modell-unabhängige Grenzen berechnet.
Resumo:
rnThis thesis is on the flavor problem of Randall Sundrum modelsrnand their strongly coupled dual theories. These models are particularly wellrnmotivated extensions of the Standard Model, because they simultaneously address rntherngauge hierarchy problem and the hierarchies in the quarkrnmasses and mixings. In order to put this into context, special attention is given to concepts underlying therntheories which can explain the hierarchy problem and the flavor structure of the Standard Model (SM). ThernAdS/CFTrnduality is introduced and its implications for the Randall Sundrum model withrnfermions in the bulk andrngeneral bulk gauge groups is investigated. It will be shown that the differentrnterms in the general 5D propagator of a bulk gauge field can be related tornthe corresponding diagrams of the strongly coupled dual, which allows for arndeeperrnunderstanding of the origin of flavor changing neutral currents generated by thernexchange of the Kaluza Klein excitations of these bulk fields.rnIn the numerical analysis, different observables which are sensitive torncorrections from therntree-levelrnexchange of these resonances will be presented on the basis of updatedrnexperimental data from the Tevatron and LHC experiments. This includesrnelectroweak precision observables, namely corrections to the S and Trnparameters followed by corrections to the Zbb vertex, flavor changingrnobservables with flavor changes at one vertex, viz. BR (Bd -> mu+mu-) and BR (Bs -> mu+mu-), and two vertices,rn viz. S_psiphi and |eps_K|, as well as bounds from direct detectionrnexperiments. rnThe analysis will show that all of these bounds can be brought in agreement withrna new physics scale Lambda_NP in the TeV range, except for the CPrnviolating quantity |eps_K|, which requires Lambda_NP= Ord(10) TeVrnin the absencernof fine-tuning. The numerous modifications of the Randall Sundrum modelrnin the literature, which try to attenuate this bound are reviewed andrncategorized.rnrnSubsequently, a novel solution to this flavor problem, based on an extendedrncolor gauge group in the bulk and its thorough implementation inrnthe RS model, will be presented, as well as an analysis of the observablesrnmentioned above in the extended model. This solution is especially motivatedrnfromrnthe point of view of the strongly coupled dual theory and the implications forrnstrongly coupled models of new physics, which do not possess a holographic dual,rnare examined.rnFinally, the top quark plays a special role in models with a geometric explanation ofrnflavor hierarchies and the predictions in the Randall-Sundrum model with andrnwithout the proposed extension for the forward-backward asymmetryrnA_FB^trnin top pair production are computed.
Resumo:
In this thesis we investigate the phenomenology of supersymmetric particles at hadron colliders beyond next-to-leading order (NLO) in perturbation theory. We discuss the foundations of Soft-Collinear Effective Theory (SCET) and, in particular, we explicitly construct the SCET Lagrangian for QCD. As an example, we discuss factorization and resummation for the Drell-Yan process in SCET. We use techniques from SCET to improve existing calculations of the production cross sections for slepton-pair production and top-squark-pair production at hadron colliders. As a first application, we implement soft-gluon resummation at next-to-next-to-next-to-leading logarithmic order (NNNLL) for slepton-pair production in the minimal supersymmetric extension of the Standard Model (MSSM). This approach resums large logarithmic corrections arising from the dynamical enhancement of the partonic threshold region caused by steeply falling parton luminosities. We evaluate the resummed invariant-mass distribution and total cross section for slepton-pair production at the Tevatron and LHC and we match these results, in the threshold region, onto NLO fixed-order calculations. As a second application we present the most precise predictions available for top-squark-pair production total cross sections at the LHC. These results are based on approximate NNLO formulas in fixed-order perturbation theory, which completely determine the coefficients multiplying the singular plus distributions. The analysis of the threshold region is carried out in pair invariant mass (PIM) kinematics and in single-particle inclusive (1PI) kinematics. We then match our results in the threshold region onto the exact fixed-order NLO results and perform a detailed numerical analysis of the total cross section.
Resumo:
In this thesis, we develop high precision tools for the simulation of slepton pair production processes at hadron colliders and apply them to phenomenological studies at the LHC. Our approach is based on the POWHEG method for the matching of next-to-leading order results in perturbation theory to parton showers. We calculate matrix elements for slepton pair production and for the production of a slepton pair in association with a jet perturbatively at next-to-leading order in supersymmetric quantum chromodynamics. Both processes are subsequently implemented in the POWHEG BOX, a publicly available software tool that contains general parts of the POWHEG matching scheme. We investigate phenomenological consequences of our calculations in several setups that respect experimental exclusion limits for supersymmetric particles and provide precise predictions for slepton signatures at the LHC. The inclusion of QCD emissions in the partonic matrix elements allows for an accurate description of hard jets. Interfacing our codes to the multi-purpose Monte-Carlo event generator PYTHIA, we simulate parton showers and slepton decays in fully exclusive events. Advanced kinematical variables and specific search strategies are examined as means for slepton discovery in experimentally challenging setups.