22 resultados para non-equilibrium field dynamics

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diese Doktorarbeit untersucht das Verhalten von komplexenFluidenunter Scherung, insbesondere den Einfluss von Scherflüssenauf dieStrukturbildung.Dazu wird ein Modell dieser entworfen, welches imRahmen von Molekulardynamiksimulationen verwendet wird.Zunächst werden Gleichgewichtseigenschaften dieses Modellsuntersucht.Hierbei wird unter anderem die Lage desOrdnungs--Unordnungsübergangs von derisotropen zur lamellaren Phase der Dimere bestimmt.Der Einfluss von Scherflüssen auf diese lamellare Phase wirdnununtersucht und mit analytischen Theorien verglichen. Die Scherung einer parallelen lamellaren Phase ruft eineNeuausrichtung des Direktors in Flussrichtung hervor.Das verursacht eine Verminderung der Schichtdicke mitsteigender Scherrateund führt oberhalb eines Schwellwertes zu Ondulationen.Ein vergleichbares Verhalten wird auch in lamellarenSystemengefunden, an denen in Richtung des Direktors gezogen wird.Allerdings wird festgestellt, dass die Art der Bifurkationenin beidenFällen unterschiedlich ist.Unter Scherung wird ein Übergang von Lamellen parallelerAusrichtung zu senkrechter gefunden.Dabei wird beoachtet, dass die Scherspannung in senkrechterOrientierungniedriger als in der parallelen ist.Dies führt unter bestimmten Bedingungen zum Auftreten vonScherbändern, was auch in Simulationen beobachtet wird. Es ist gelungen mit einem einfachen Modell viele Apsekte desVerhalten vonkomplexen Fluiden wiederzugeben. Die Strukturbildung hängt offensichtlich nurbedingt von lokalen Eigenschaften der Moleküle ab.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquids under the influence of external fields exhibit a wide range of intriguing phenomena that can be markedly different from the behaviour of a quiescent system. This work considers two different systems — a glassforming Yukawa system and a colloid-polymer mixture — by Molecular Dynamics (MD) computer simulations coupled to dissipative particle dynamics. The former consists of a 50-50 binary mixture of differently-sized, like-charged colloids interacting via a screened Coulomb (Yukawa) potential. Near the glass transition the influence of an external shear field is studied. In particular, the transition from elastic response to plastic flow is of interest. At first, this model is characterised in equilibrium. Upon decreasing temperature it exhibits the typical dynamics of glassforming liquids, i.e. the structural relaxation time τα grows strongly in a rather small temperature range. This is discussed with respect to the mode-coupling theory of the glass transition (MCT). For the simulation of bulk systems under shear, Lees-Edwards boundary conditions are applied. At constant shear rates γ˙ ≫ 1/τα the relevant time scale is given by 1/γ˙ and the system shows shear thinning behaviour. In order to understand the pronounced differences between a quiescent system and a system under shear, the response to a suddenly commencing or terminating shear flow is studied. After the switch-on of the shear field the shear stress shows an overshoot, marking the transition from elastic to plastic deformation, which is connected to a super-diffusive increase of the mean squared displacement. Since the average static structure only depends on the value of the shear stress, it does not discriminate between those two regimes. The distribution of local stresses, in contrast, becomes broader as soon as the system starts flowing. After a switch-off of the shear field, these additional fluctuations are responsible for the fast decay of stresses, which occurs on a time scale 1/γ˙ . The stress decay after a switch-off in the elastic regime, on the other hand, happens on the much larger time scale of structural relaxation τα. While stresses decrease to zero after a switch-off for temperatures above the glass transition, they decay to a finite value for lower temperatures. The obtained results are important for advancing new theoretical approaches in the framework of mode-coupling theory. Furthermore, they suggest new experimental investigations on colloidal systems. The colloid-polymer mixture is studied in the context of the behaviour near the critical point of phase separation. For the MD simulations a new effective model with soft interaction potentials is introduced and its phase diagram is presented. Here, mainly the equilibrium properties of this model are characterised. While the self-diffusion constants of colloids and polymers do not change strongly when the critical point is approached, critical slowing down of interdiffusion is observed. The order parameter fluctuations can be determined through the long-wavelength limit of static structure factors. For this strongly asymmetric mixture it is shown how the relevant structure factor can be extracted by a diagonalisation of a matrix that contains the partial static structure factors. By presenting first results of this model under shear it is demonstrated that it is suitable for non-equilibrium simulations as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis deals with the development of a novel simulation technique for macromolecules in electrolyte solutions, with the aim of a performance improvement over current molecular-dynamics based simulation methods. In solutions containing charged macromolecules and salt ions, it is the complex interplay of electrostatic interactions and hydrodynamics that determines the equilibrium and non-equilibrium behavior. However, the treatment of the solvent and dissolved ions makes up the major part of the computational effort. Thus an efficient modeling of both components is essential for the performance of a method. With the novel method we approach the solvent in a coarse-grained fashion and replace the explicit-ion description by a dynamic mean-field treatment. Hence we combine particle- and field-based descriptions in a hybrid method and thereby effectively solve the electrokinetic equations. The developed algorithm is tested extensively in terms of accuracy and performance, and suitable parameter sets are determined. As a first application we study charged polymer solutions (polyelectrolytes) in shear flow with focus on their viscoelastic properties. Here we also include semidilute solutions, which are computationally demanding. Secondly we study the electro-osmotic flow on superhydrophobic surfaces, where we perform a detailed comparison to theoretical predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biosensors find wide application in clinical diagnostics, bioprocess control and environmental monitoring. They should not only show high specificity and reproducibility but also a high sensitivity and stability of the signal. Therefore, I introduce a novel sensor technology based on plasmonic nanoparticles which overcomes both of these limitations. Plasmonic nanoparticles exhibit strong absorption and scattering in the visible and near-infrared spectral range. The plasmon resonance, the collective coherent oscillation mode of the conduction band electrons against the positively charged ionic lattice, is sensitive to the local environment of the particle. I monitor these changes in the resonance wavelength by a new dark-field spectroscopy technique. Due to a strong light source and a highly sensitive detector a temporal resolution in the microsecond regime is possible in combination with a high spectral stability. This opens a window to investigate dynamics on the molecular level and to gain knowledge about fundamental biological processes.rnFirst, I investigate adsorption at the non-equilibrium as well as at the equilibrium state. I show the temporal evolution of single adsorption events of fibrinogen on the surface of the sensor on a millisecond timescale. Fibrinogen is a blood plasma protein with a unique shape that plays a central role in blood coagulation and is always involved in cell-biomaterial interactions. Further, I monitor equilibrium coverage fluctuations of sodium dodecyl sulfate and demonstrate a new approach to quantify the characteristic rate constants which is independent of mass transfer interference and long term drifts of the measured signal. This method has been investigated theoretically by Monte-Carlo simulations but so far there has been no sensor technology with a sufficient signal-to-noise ratio.rnSecond, I apply plasmonic nanoparticles as sensors for the determination of diffusion coefficients. Thereby, the sensing volume of a single, immobilized nanorod is used as detection volume. When a diffusing particle enters the detection volume a shift in the resonance wavelength is introduced. As no labeling of the analyte is necessary the hydrodynamic radius and thus the diffusion properties are not altered and can be studied in their natural form. In comparison to the conventional Fluorescence Correlation Spectroscopy technique a volume reduction by a factor of 5000-10000 is reached.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mit Hilfe von Molekulardynamik-Simulationen untersuchen wir bürstenartige Systeme unter guten Lösungsmittelbedingungen. Diese Systeme sind, dank ihren vielfältigen Beschaffenheiten, die von Molekularparametern und äußeren Bedingungen abhängig sind, wichtig für viele industrielle Anwendungen. Man vermutet, dass die Polymerbürsten eine entscheidende Rolle in der Natur wegen ihrer einzigartigen Gleiteigenschaften spielen. Ein vergröbertes Modell wird verwendet, um die strukturellen und dynamischen Eigenschaften zweier hochkomprimierter Polymerbürsten, die eine niedrige Reibung aufweisen, zu untersuchen. Allerdings sind die Lubrikationseigenschaften dieser Systeme, die in vielen biologischen Systemen vorhanden sind, beeinflußt. Wir untersuchen so-genannte "weiche Kolloide", die zwischen den beiden Polymerbürsten eingebettet sind, und wie diese Makroobjekte auf die Polymerbürsten wirken.rnrnNicht-Gleichgewichts-Molekulardynamik-Simulationen werden durchgeführt, in denen die hydrodynamischen Wechselwirkungen durch die Anwendung des DPD-Thermostaten mit expliziten Lösungsmittelmolekülen berücksichtigt werden. Wir zeigen, dass die Kenntnis der Gleichgewichtseigenschaften des Systems erlaubt, dynamische Nichtgleichgewichtsigenschaften der Doppelschicht vorherzusagen.rnrnWir untersuchen, wie die effektive Wechselwirkung zwischen kolloidalen Einschlüßen durch die Anwesenheit der Bürsten (in Abhängigkeit der Weichheit der Kolloide und der Pfropfdichte der Bürsten) beeinflußt wird. Als nächsten Schritt untersuchen wir die rheologische Antwort von solchen komplexen Doppelschichten auf Scherung. Wir entwickeln eine Skalen-Theorie, die die Abhängigkeit der makroskopischen Transporteigenschaften und der lateralen Ausdehnung der verankerten Ketten von der Weissenberg Zahl oberhalb des Bereichs, in dem die lineare Antwort-Theorie gilt, voraussagt. Die Vorhersagen der Theorie stimmen gut mit unseren und früheren numerischen Ergebnissen und neuen Experimenten überein. Unsere Theorie bietet die Möglichkeit, die Relaxationszeit der Doppelschicht zu berechnen. Wenn diese Zeit mit einer charakteristischen Längenskala kombiniert wird, kann auch das ''transiente'' (nicht-stationäre) Verhalten beschrieben werden.rnrnrnWir untersuchen die Antwort des Drucktensors und die Deformation der Bürsten während der Scherinvertierung für grosse Weissenberg Zahlen. Wir entwickeln eine Vorhersage für die charakteristische Zeit, nach der das System wieder den stationären Zustand erreicht.rnrnrnElektrostatik spielt eine bedeutende Rolle in vielen biologischen Prozessen. Die Lubrikationseigenschaften der Polymerbürsten werden durch die Anwesenheit langreichweitiger Wechselwirkungen stark beeinflusst. Für unterschiedliche Stärken der elektrostatischen Wechselwirkungen untersuchen wir rheologische Eigenschaften der Doppelschicht und vergleichen mit neutralen Systemen. Wir studieren den kontinuierlichen Übergang der Systemeigenschaften von neutralen zu stark geladenen Bürsten durch Variation der Bjerrumlänge und der Ladungsdichte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the remarkable versatility and usefulness of applications of Xe-129 NMR experiments is further extended. The application of Xe-129 NMR spectroscopy to very different system is studied, including dynamic and static, solid and liquid, porous and non-porous systems. Using the large non-equilibrium polarization created by hyperpolarization of Xe-129, time-resolved NMR measurements can be used for the online-monitoring of dynamic systems. In the first part of this work, several improvements for medical applications of hyperpolarized Xe-129 are achieved and their feasibility shown experimentally. A large gain in speed and reproducibility of the accumulation process of Xe-129 as ice and an enhancement of the usable polarization in any experiment requiring prior accumulation are achieved. An enhancement of the longitudinal relaxation time of Xe-129 is realized by admixture of a buffer gas during the storage of hyperpolarized Xe-129. Pursuing the efforts of simplifying the accumulation process and enhancing the storage time of hyperpolarized Xe-129 will allow for a wider use of the hyperpolarized gas in (medical) MRI experiments. Concerning the use of hyperpolarized Xe-129 in MRI, the influence of the diffusion coefficient of the gas on parameters of the image contrast is experimentally demonstrated here by admixture of a buffer gas and thus changing the diffusion coefficient. In the second part of this work, a polymer system with unique features is probed by Xe-129 NMR spectroscopy, proving the method to be a valuable tool for the characterization of the anisotropic properties of semicrystalline, syndiotactic polystyrene films. The polymer films contain hollow cavities or channels with sizes in the sub-nanometer range, allowing for adsorption of Xe-129 and subsequent NMR measurements. Despite the use of a ’real-world’ system, the transfer of the anisotropic properties from the material to adsorbed Xe-129 atoms is shown, which was previously only known for fully crystalline materials. The anisotropic behavior towards atomar guests inside the polymer films is proven here for the first time for one of the phases. For the polymer phase containing nanochannels, the dominance of interactions between Xe-129 atoms in the channels compared to interactions between Xe atoms and the channel walls are proven by measurements of a powder sample of the polymer material and experiments including the rotation of the films in the external magnetic field as well as temperature-dependent measurements. The characterization of ’real-world’ systems showing very high degrees of anisotropy by Xe-129 are deemed to be very valuable in future applications. In the last part of this work, a new method for the online monitoring of chemical reactions has been proposed and its feasibility and validity are experimentally proven. The chemical shift dependence of dissolved Xe-129 on the composition of a reaction mixture is used for the online monitoring of free-radical miniemulsion polymerization reactions. Xe-129 NMR spectroscopy provides an excellent method for the online monitoring of polymerization reactions, due to the simplicity of the Xe-129 NMR spectra and the simple relationship between the Xe-129 chemical shift and the reaction conversion. The results of the time-resolved Xe-129 NMR measurements are compared to those from calorimetric measurements, showing a good qualitative agreement. The applicability of the new method to reactions other than polymerization reactions is investigated by the online monitoring of an enzymatic reaction in a miniemulsion. The successful combination of the large sensitivity of Xe-129, the NMR signal enhancements due to hyperpolarization, and the solubility of Xe-129 gives access to the large new field of investigations of chemical reaction kinetics in dynamic and complex systems like miniemulsions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kolloidale Suspensionen eignen sich aufgrund der für sierelevanten Längeskalen hervorragend zur Beobachtung mittelsoptischer Mikroskopie. Die Verwendung speziellerKontrastierverfahren kann bestimmte Aspekte kolloidalerStrukturen besonders hervorheben und eine verbesserteAnalyse von Nichtgleichgewichtszuständen in kolloidalenSystemen ermöglichen. Mittels Phasen- und Interferenzkontrast konnte die Ursachedes Kleinwinkelstreumaximums in der Lichtstreuung an einerSuspension aus Mikronetzteilchen auf die unterschiedlichenStrukturfaktoren von Kristall und Korngrenze zurückgeführtwerden.Der Zusammenhang von Struktur und Farbe eingetrockneterMultilagen wurde in hochauflösender Durchlichtmikroskopiedemonstriert und zur Analyse der inneren Struktur derKristalldomänen inklusive von Versetzungen und Stapelfehlernbenutzt.Mit der Polarisationsmikroskopie konnte die Veränderung derPartikelzahldichte um ein Ionentauscherbruchstück auf einenSalzkonzentrationsgradienten zurückgeführt werden. Die Untersuchung kolloidaler Suspensionen in einem Scherfeldmittels Fourier-Mikroskopie lieferte im Bereich fluiderGleichgewichtsstrukturen den Nachweis scherinduzierterhexagonaler Strukturen. Die Ultramikroskopie mit erweiterterSchärfentiefe ermöglichte die direkte Beobachtung desGleitmechanismus von verscherten hexagonalen Lagen und dieKlassifizierung durch die entwickelte2D-Partikelkorrelation. Die Scherung induziert in fluidenStrukturen hexagonale Ordnung und zerstört bei großenScherraten existierende Ordnung. Es wird eineWandstabilisierung der hexagonalen Strukturen beobachtet. Mittels Bragg-Mikroskopie konnte unter Scherung dieHomogenität der Struktur innerhalb der Scherzelledokumentiert werden sowie nach Scherung die Entstehung derGleichgewichts bcc Phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kolloidale Suspensionen aus identischen kugelförmigen, geladenen Partikeln in wässrigen Medien stellen ein ideales Modellsystem zur Untersuchung des Gleichgewichtsverhaltens, aber auch des Nicht-Gleichgewichtsverhaltens Weicher Materie dar. So bilden derartige Systeme bei hinreichend starker und langreichweitiger elektrostatischer Repulsion fluid und kristallin geordnete Strukturen aus, die wegen der weitreichenden Analogie zu atomar kondensierter Materie als kolloidale Fluide und Kristalle bezeichnet werden. Von großem Vorteil ist dabei die Möglichkeit zur kontrollierten Einstellung der Wechselwirkung und die gute optische Zugänglichkeit für Mikroskopie und Lichtstreuung sowie die Weichheit der Materialien, aufgrund derer sich auch Zustände fernab des mechanischen Gleichgewichts gezielt präparieren lassen. Themenstellung der vorliegenden Arbeit ist die Untersuchung des Phasenverhaltens und der Fließmechanismen kolloidaler Kristalle in einer Rohrströmung. Im ersten Teil der Arbeit wird gezeigt, dass beim Fluss durch eine zylindrische Röhre Mehrphasenkoexistenz auftritt, wobei ein polykristalliner Kern von einer isotropen Scherschmelze umgeben ist. Zusätzlich treten an der Grenze zwischen diesen Phasen und an der Rohrwand Phasen hexagonal geordneter übereinander hinweggleitender Lagen auf. Der Vergleich zwischen auf der Basis der Navier-Stokes-Gleichung theoretisch berechneten und gemessenen Geschwindigkeitsprofilen zeigt, dass jede dieser Phasen für sich Newtonsches Fließverhalten aufweist. Die Gesamtviskosität ist hingegen durch die mit dem Durchsatz veränderliche Phasenzusammensetzung Nicht-Newtonsch. Damit gelang es, die erstmalig von Würth beschriebene Scherverdünnung auf eine Veränderung der Phasenzusammensetzung zurückzuführen. Im zweiten Teil der Arbeit wurde erstmals das Fließverhalten der Lagenphasen mittels Lichtstreuung und Korrelationsanalyse untersucht. Dafür wurde ein im Prinzip einfacher, aber leistungsstarker Aufbau realisiert, der es erlaubt, die zeitliche Veränderung der Bragg-Reflexe der Lagenphase in radialer und azimutaler Richtung zu verfolgen und mittels Fourieranalyse zu analysieren. In Abhängigkeit vom Durchsatz geht die zunächst rastend gleitende Lagenphase in eine frei gleitende Lagenphase über, wobei charakteristische Veränderungen der Spektren sowie der Korrelationsfunktionen auftreten, die detailliert diskutiert werden. Der Übergang im Gleitmechanismus ist mit einem Verlust der Autokorrelation der Rotationskomponente der periodischen Intra-Lagenverzerrung verbunden, während die Kompressionskomponente erhalten bleibt. Bei hohen Durchflüssen lassen die Reflexbewegungen auf das Auftreten einer Eigenschwingung der frei gleitenden Lagen schließen. Diese Schwingung lässt sich als Rotationsbewegung, gekoppelt mit einer transversalen Auslenkung in Vortexrichtung, beschreiben. Die Ergebnisse erlauben eine detaillierte Diskussion von verschiedenen Modellvorstellungen anderer Autoren.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis is concerned with the study of a quantum physical system composed of a small particle system (such as a spin chain) and several quantized massless boson fields (as photon gasses or phonon fields) at positive temperature. The setup serves as a simplified model for matter in interaction with thermal "radiation" from different sources. Hereby, questions concerning the dynamical and thermodynamic properties of particle-boson configurations far from thermal equilibrium are in the center of interest. We study a specific situation where the particle system is brought in contact with the boson systems (occasionally referred to as heat reservoirs) where the reservoirs are prepared close to thermal equilibrium states, each at a different temperature. We analyze the interacting time evolution of such an initial configuration and we show thermal relaxation of the system into a stationary state, i.e., we prove the existence of a time invariant state which is the unique limit state of the considered initial configurations evolving in time. As long as the reservoirs have been prepared at different temperatures, this stationary state features thermodynamic characteristics as stationary energy fluxes and a positive entropy production rate which distinguishes it from being a thermal equilibrium at any temperature. Therefore, we refer to it as non-equilibrium stationary state or simply NESS. The physical setup is phrased mathematically in the language of C*-algebras. The thesis gives an extended review of the application of operator algebraic theories to quantum statistical mechanics and introduces in detail the mathematical objects to describe matter in interaction with radiation. The C*-theory is adapted to the concrete setup. The algebraic description of the system is lifted into a Hilbert space framework. The appropriate Hilbert space representation is given by a bosonic Fock space over a suitable L2-space. The first part of the present work is concluded by the derivation of a spectral theory which connects the dynamical and thermodynamic features with spectral properties of a suitable generator, say K, of the time evolution in this Hilbert space setting. That way, the question about thermal relaxation becomes a spectral problem. The operator K is of Pauli-Fierz type. The spectral analysis of the generator K follows. This task is the core part of the work and it employs various kinds of functional analytic techniques. The operator K results from a perturbation of an operator L0 which describes the non-interacting particle-boson system. All spectral considerations are done in a perturbative regime, i.e., we assume that the strength of the coupling is sufficiently small. The extraction of dynamical features of the system from properties of K requires, in particular, the knowledge about the spectrum of K in the nearest vicinity of eigenvalues of the unperturbed operator L0. Since convergent Neumann series expansions only qualify to study the perturbed spectrum in the neighborhood of the unperturbed one on a scale of order of the coupling strength we need to apply a more refined tool, the Feshbach map. This technique allows the analysis of the spectrum on a smaller scale by transferring the analysis to a spectral subspace. The need of spectral information on arbitrary scales requires an iteration of the Feshbach map. This procedure leads to an operator-theoretic renormalization group. The reader is introduced to the Feshbach technique and the renormalization procedure based on it is discussed in full detail. Further, it is explained how the spectral information is extracted from the renormalization group flow. The present dissertation is an extension of two kinds of a recent research contribution by Jakšić and Pillet to a similar physical setup. Firstly, we consider the more delicate situation of bosonic heat reservoirs instead of fermionic ones, and secondly, the system can be studied uniformly for small reservoir temperatures. The adaption of the Feshbach map-based renormalization procedure by Bach, Chen, Fröhlich, and Sigal to concrete spectral problems in quantum statistical mechanics is a further novelty of this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sterne mit einer Anfangsmasse zwischen etwa 8 und 25 Sonnenmassen enden ihre Existenz mit einer gewaltigen Explosion, einer Typ II Supernova. Die hierbei entstehende Hoch-Entropie-Blase ist ein Bereich am Rande des sich bildenden Neutronensterns und gilt als möglicher Ort für den r-Prozess. Wegen der hohen Temperatur T innerhalb der Blase ist die Materie dort vollkommen photodesintegriert. Das Verhältnis von Neutronen zu Protonen wird durch die Elektronenhäufigkeit Ye beschrieben. Die thermodynamische Entwicklung des Systems wird durch die Entropie S gegeben. Da die Expansion der Blase schnell vonstatten geht, kann sie als adiabatisch betrachtet werden. Die Entropie S ist dann proportional zu T^3/rho, wobei rho die Dichte darstellt. Die explizite Zeitentwicklung von T und rho sowie die Prozessdauer hängen von Vexp, der Expansionsgeschwindigkeit der Blase, ab. Der erste Teil dieser Dissertation beschäftigt sich mit dem Prozess der Reaktionen mit geladenen Teilchen, dem alpha-Prozess. Dieser Prozess endet bei Temperaturen von etwa 3 mal 10^9 K, dem sogenannten "alpha-reichen" Freezeout, wobei überwiegend alpha-Teilchen, freie Neutronen sowie ein kleiner Anteil von mittelschweren "Saat"-Kernen im Massenbereich um A=100 gebildet werden. Das Verhältnis von freien Neutronen zu Saatkernen Yn/Yseed ist entscheidend für den möglichen Ablauf eines r-Prozesses. Der zweite Teil dieser Arbeit beschäftigt sich mit dem eigentlichen r-Prozess, der bei Neutronenanzahldichten von bis zu 10^27 Neutronen pro cm^3 stattfindet, und innerhalb von maximal 400 ms sehr neutronenreiche "Progenitor"-Isotope von Elementen bis zum Thorium und Uran bildet. Bei dem sich anschliessendem Ausfrieren der Neutroneneinfangreaktionen bei 10^9 K und 10^20 Neutronen pro cm^3 erfolgt dann der beta-Rückzerfall der ursprünglichen r-Prozesskerne zum Tal der Stabilität. Diese Nicht-Gleichgewichts-Phase wird in der vorliegenden Arbeit in einer Parameterstudie eingehend untersucht. Abschliessend werden astrophysikalische Bedingungen definiert, unter denen die gesamte Verteilung der solaren r-Prozess-Isotopenhäufigkeiten reproduziert werden können.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die elektrostatische Wechselwirkung zwischen entgegengesetzt geladenen Polyelektrolyten führt zur spontanen Bildung von Interpolyelektrolytkomplexen. Besonders im Fokus des akademischen und biotechnologischen Interesses stehen derzeit Komplexe aus DNA und synthetischen Polykationen, da eine Anwendung dieser speziellen Interpolyelektrolytkomplexe in der nicht-viralen Gentherapie vielfältig diskutiert wird. Ziel der vorliegenden Arbeit war es, den Einfluss von Kettensteifheit auf die Bildung von Interpolyelektrolytkomplexen zu untersuchen und dabei Wege aufzuzeigen, die eine Kontrolle der Topologie von Interpolyelektrolytkomplexen ermöglichen. Neben dem topologischen Einfluss wurde untersucht, wie durch Komplexierung hochmolekularer Polyelektrolyte equilibrierbare Strukturen erhalten werden können. Als Modellsystem für diese Untersuchungen wurden zylindrische Bürstenpolymere verwendet, denen als topologischer „Kontrast“ das Komplexierungsverhalten kommerzieller PAMAM-G5-Dendrimere mit kugelförmiger Topologie gegenüber gestellt wurde. Um den Ladungsgrad des Bürstenpolymers beliebig variieren zu können, wurden Bürstenpolymere mit Poly(ethylenimin)-Seitenketten synthetisiert, deren Ladungsdichte über den Protonierungsgrad einstellbar ist. Die vorliegende Arbeit zeigt, wie diese mit Hilfe der Makromonomermethode hergestellt werden konnten. Die Komplexbildung von DNA mit semiflexiblen zylindrischen Bürstenpolymeren mit unterschiedlichen Seitenketten und Ladungsdichten in wässriger Lösung hat gezeigt, dass diese in allen untersuchten Fällen unter kinetischer Kontrolle verläuft und Nicht-Gleichgewichtsstrukturen gebildet werden. Sehr überraschend wurde festgestellt, dass die Größen der mit vorgelegter DNA gebildeten Komplexe ungeachtet des verwendeten Polykations identisch sind und DNA-Komplexe mit einem Radius von 30 bis 50 nm und einer kugelförmigen Topologie resultieren. Diese kinetisch kontrollierte Komplexbildung konnte in nicht-wässriger Lösung durch starke Reduktion der Anzahl wechselwirkender Ladungen verhindert werden, so dass eine thermodynamische Kontrolle möglich wurde. Unter diesen Bedingungen ist es gelungen, aus hochgeladenen Poly(styrolsulfonat)-Bürsten mit modifizierten Poly(ethylenimin)-Bürsten oder PAMAM-Dendrimeren Komplexe zylindrischer Topologie herzu-stellen. Für letztere konnte darüber hinaus postuliert werden, dass diese Komplexe eine dichteste Packung der PAMAM-Dendrimere darstellen, für deren Bildung das Polyanion mit seiner größeren Konturlänge und seiner zylindrischen Topologie als Templat dient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die vorliegende Arbeit beschäftigt sich mit der Darstellung von Latexpartikeln in nicht-wässrigen Emulsionssystemen. Hintergrund der Untersuchungen war die Frage, ob es durch die Anwendung von nicht-wässrigen Emulsionen ermöglicht werden kann, sowohl wassersensitive Monomere als auch feuchtigkeitsempfindliche Polymerisationen zur Darstellung von Polymer-Latexpartikeln und deren Primärdispersionen einzusetzen. Das Basiskonzept der Arbeit bestand darin, nicht-wässrige Emulsionen auf der Basis zweier nicht mischbarer organischer Lösungsmittel unterschiedlicher Polarität auszubilden und anschließend die dispergierte Phase der Emulsion zur Synthese der Latexpartikel auszunutzen. Hierzu wurden verschiedene nicht-wässrige Emulsionssysteme erarbeitet, welche als dispergierte Phase ein polares und als kontinuierliche Phase ein unpolares Lösungsmittel enthielten. Auf Basis dieser Ergebnisse wurde in den nachfolgenden Untersuchungen zunächst die Anwendbarkeit solcher Emulsionen zur Darstellung verschiedener Acrylat- und Methacrylatpolymerdispersionen mittels radikalischer Polymerisation studiert. Um zu zeigen, dass die hier entwickelten nicht-wässrigen Emulsionen auch zur Durchführung von Stufenwachstumsreaktionen geeignet sind, wurden ebenfalls Polyester-, Polyamid- und Polyurethan-Latexpartikel dargestellt. Die Molekulargewichte der erhaltenen Polymere lagen bei bis zu 40 000 g/mol, im Vergleich zu wässrigen Emulsions- und Miniemulsions¬polymerisationssystemen sind diese um den Faktor fünf bis 30 höher. Es kann davon ausgegangen werden, dass hauptsächlich zwei Faktoren für die hohen Molekulargewichte verantwortlich sind: Zum einen die wasserfreien Bedingungen, welche die Hydrolyse der reaktiven Gruppen verhindern, und zum anderen die teilweise erfüllten Schotten-Baumann-Bedingungen, welche an der Grenzfläche zwischen dispergierter und kontinuierlicher Phase eine durch Diffusion kontrollierte ausgeglichene Stöchiometrie der Reaktionspartner gewährleisten. Somit ist es erstmals möglich, hochmolekulare Polyester, -amide und -urethane in nur einem Syntheseschritt als Primär¬dispersion darzustellen. Die Variabilität der nicht-wässrigen Emulsionen wurde zudem in weiteren Beispielen durch die Synthese von verschiedenen elektrisch leitfähigen Latices, wie z.B. Polyacetylen-Latexpartikeln, aufgezeigt. In dieser Arbeit konnte gezeigt werden, dass die entwickelten nicht-wässrigen Emulsionen eine äußerst breite Anwendbarkeit zur Darstellung von Polymer-Latexpartikeln aufweisen. Durch die wasserfreien Bedingungen erlauben die beschriebenen Emulsionsprozesse, Latexpartikel und entsprechende nicht-wässrige Dispersionen nicht nur traditionell radikalisch, sondern auch mittels weiterer Polymerisationsmechanismen (katalytisch, oxidativ oder mittels Polykondensation bzw. -addition) darzustellen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tiefherd-Beben, die im oberen Erdmantel in einer Tiefe von ca. 400 km auftreten, werden gewöhnlich mit dem in gleicher Tiefe auftretenden druckabhängigen, polymorphen Phasenübergang von Olivine (α-Phase) zu Spinel (β-Phase) in Verbindung gebracht. Es ist jedoch nach wie vor unklar, wie der Phasenübergang mit dem mechanischen Versagen des Mantelmaterials zusammenhängt. Zur Zeit werden im Wesentlichen zwei Modelle diskutiert, die entweder Mikrostrukturen, die durch den Phasenübergang entstehen, oder aber die rheologischen Veränderungen des Mantelgesteins durch den Phasenübergang dafür verantwortlich machen. Dabei sind Untersuchungen der Olivin→Spinel Umwandlung durch die Unzugänglichkeit des natürlichen Materials vollständig auf theoretische Überlegungen sowie Hochdruck-Experimente und Numerische Simulationen beschränkt. Das zentrale Thema dieser Dissertation war es, ein funktionierendes Computermodell zur Simulation der Mikrostrukturen zu entwickeln, die durch den Phasenübergang entstehen. Des Weiteren wurde das Computer Modell angewandt um die mikrostrukturelle Entwicklung von Spinelkörnern und die Kontrollparameter zu untersuchen. Die Arbeit ist daher in zwei Teile unterteilt: Der erste Teil (Kap. 2 und 3) behandelt die physikalischen Gesetzmäßigkeiten und die prinzipielle Funktionsweise des Computer Modells, das auf der Kombination von Gleichungen zur Errechnung der kinetischen Reaktionsgeschwindigkeit mit Gesetzen der Nichtgleichgewichtsthermodynamik unter nicht-hydostatischen Bedingungen beruht. Das Computermodell erweitert ein Federnetzwerk der Software latte aus dem Programmpaket elle. Der wichtigste Parameter ist dabei die Normalspannung auf der Kornoberfläche von Spinel. Darüber hinaus berücksichtigt das Programm die Latenzwärme der Reaktion, die Oberflächenenergie und die geringe Viskosität von Mantelmaterial als weitere wesentliche Parameter in der Berechnung der Reaktionskinetic. Das Wachstumsverhalten und die fraktale Dimension von errechneten Spinelkörnern ist dabei in guter Übereinstimmung mit Spinelstrukturen aus Hochdruckexperimenten. Im zweiten Teil der Arbeit wird das Computermodell angewandt, um die Entwicklung der Oberflächenstruktur von Spinelkörnern unter verschiedenen Bedigungen zu eruieren. Die sogenannte ’anticrack theory of faulting’, die den katastrophalen Verlauf der Olivine→Spinel Umwandlung in olivinhaltigem Material unter differentieller Spannung durch Spannungskonzentrationen erklärt, wurde anhand des Computermodells untersucht. Der entsprechende Mechanismus konnte dabei nicht bestätigt werden. Stattdessen können Oberflächenstrukturen, die Ähnlichkeiten zu Anticracks aufweisen, durch Unreinheiten des Materials erklärt werden (Kap. 4). Eine Reihe von Simulationen wurde der Herleitung der wichtigsten Kontrollparameter der Reaktion in monomineralischem Olivin gewidmet (Kap. 5 and Kap. 6). Als wichtigste Einflüsse auf die Kornform von Spinel stellten sich dabei die Hauptnormalspannungen auf dem System sowie Heterogenitäten im Wirtsminerals und die Viskosität heraus. Im weiteren Verlauf wurden die Nukleierung und das Wachstum von Spinel in polymineralischen Mineralparagenesen untersucht (Kap. 7). Die Reaktionsgeschwindigkeit der Olivine→Spinel Umwandlung und die Entwicklung von Spinelnetzwerken und Clustern wird durch die Gegenwart nicht-reaktiver Minerale wie Granat oder Pyroxen erheblich beschleunigt. Die Bildung von Spinelnetzwerken hat das Potential, die mechanischen Eigenschaften von Mantelgestein erheblich zu beeinflussen, sei es durch die Bildung potentieller Scherzonen oder durch Gerüstbildung. Dieser Lokalisierungprozess des Spinelwachstums in Mantelgesteinen kann daher ein neues Erklärungsmuster für Tiefbeben darstellen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proxy data are essential for the investigation of climate variability on time scales larger than the historical meteorological observation period. The potential value of a proxy depends on our ability to understand and quantify the physical processes that relate the corresponding climate parameter and the signal in the proxy archive. These processes can be explored under present-day conditions. In this thesis, both statistical and physical models are applied for their analysis, focusing on two specific types of proxies, lake sediment data and stable water isotopes.rnIn the first part of this work, the basis is established for statistically calibrating new proxies from lake sediments in western Germany. A comprehensive meteorological and hydrological data set is compiled and statistically analyzed. In this way, meteorological times series are identified that can be applied for the calibration of various climate proxies. A particular focus is laid on the investigation of extreme weather events, which have rarely been the objective of paleoclimate reconstructions so far. Subsequently, a concrete example of a proxy calibration is presented. Maxima in the quartz grain concentration from a lake sediment core are compared to recent windstorms. The latter are identified from the meteorological data with the help of a newly developed windstorm index, combining local measurements and reanalysis data. The statistical significance of the correlation between extreme windstorms and signals in the sediment is verified with the help of a Monte Carlo method. This correlation is fundamental for employing lake sediment data as a new proxy to reconstruct windstorm records of the geological past.rnThe second part of this thesis deals with the analysis and simulation of stable water isotopes in atmospheric vapor on daily time scales. In this way, a better understanding of the physical processes determining these isotope ratios can be obtained, which is an important prerequisite for the interpretation of isotope data from ice cores and the reconstruction of past temperature. In particular, the focus here is on the deuterium excess and its relation to the environmental conditions during evaporation of water from the ocean. As a basis for the diagnostic analysis and for evaluating the simulations, isotope measurements from Rehovot (Israel) are used, provided by the Weizmann Institute of Science. First, a Lagrangian moisture source diagnostic is employed in order to establish quantitative linkages between the measurements and the evaporation conditions of the vapor (and thus to calibrate the isotope signal). A strong negative correlation between relative humidity in the source regions and measured deuterium excess is found. On the contrary, sea surface temperature in the evaporation regions does not correlate well with deuterium excess. Although requiring confirmation by isotope data from different regions and longer time scales, this weak correlation might be of major importance for the reconstruction of moisture source temperatures from ice core data. Second, the Lagrangian source diagnostic is combined with a Craig-Gordon fractionation parameterization for the identified evaporation events in order to simulate the isotope ratios at Rehovot. In this way, the Craig-Gordon model can be directly evaluated with atmospheric isotope data, and better constraints for uncertain model parameters can be obtained. A comparison of the simulated deuterium excess with the measurements reveals that a much better agreement can be achieved using a wind speed independent formulation of the non-equilibrium fractionation factor instead of the classical parameterization introduced by Merlivat and Jouzel, which is widely applied in isotope GCMs. Finally, the first steps of the implementation of water isotope physics in the limited-area COSMO model are described, and an approach is outlined that allows to compare simulated isotope ratios to measurements in an event-based manner by using a water tagging technique. The good agreement between model results from several case studies and measurements at Rehovot demonstrates the applicability of the approach. Because the model can be run with high, potentially cloud-resolving spatial resolution, and because it contains sophisticated parameterizations of many atmospheric processes, a complete implementation of isotope physics will allow detailed, process-oriented studies of the complex variability of stable isotopes in atmospheric waters in future research.rn