2 resultados para mort neuronale

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ökonomische Entscheidungen sind ebenso wie alltägliche Entscheidungen von der Aktivität von Hirnregionen abhängig, die zur Kontrolle verschiedener Teilschritte der Entscheidung beitragen. Aktivierung und Desaktivierung dieser Hirnregionen können mit Hilfe moderner bildgebender Verfahren, wie z.B. der funktionellen Magnet-Resonanz-Tomographie (fMRI) dargestellt werden. Die vorliegende Publikation gibt einen Überblick über das interdisziplinäre wissenschaftliche Arbeitsgebiet der „Neuroökonomie“ – einem jungen Forschungsfeld der Neurowissenschaften. Dieser Überblick ist auf sieben Hauptaspekte ökonomischer und finanzieller Entscheidungen fokusiert: 1. In welcher Weise werden ökonomische Parameter wie Wert und Nutzen einer Belohnung, Gewinn oder Verlust, Risiko und Ungewissheit in spezifischen Hirnregionen abgebildet? 2. In welcher spezifischen Weise tragen anatomisch definierte Areale des Gehirns zum Entscheidungsprozess bei? 3. In welcher Weise sind die Entscheidungsprozesse durch Läsion entscheidungsrelevanter Areale des Gehirns gestört? 4. In welcher Weise sind Hirnregionen, die an den Prozessen der Entscheidung beteiligt sind, miteinander vernetzt, um durch Interaktion die Entscheidung herbeizuführen? 5. In welcher Weise ist der Entscheidungsprozess von Persönlichkeitseigenschaften, von genetischen Variationen neuronaler Funktionen und von physiologischer Regulation, z.B. durch Hormone bestimmt? 6. In welcher Weise hängt der Entscheidungsprozess vom sozialen und kulturellen Umfeld des Entscheiders ab? 7. Auf welche Weise werden bei unvollständiger Information über die Optionen der Entscheidung Heuristiken oder Intuitionen genutzt, und in welcher Weise sind Entscheidungen durch Biases beeinflussbar? Der zentrale Teil dieser Publikation gibt einen zusammenfassenden Überblick (review) über die Ergebnisse neuroökonomischer Studien, die die fMRI-Technik nutzen (bis Juni 2010).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zielgerichtete Orientierung ermöglicht es Lebewesen, überlebenswichtige Aufgaben, wie die Suche nach Ressourcen, Fortpflanzungspartnern und sicheren Plätzen zu bewältigen. Dafür ist es essentiell, die Umgebung sensorisch wahrzunehmen, frühere Erfahrungen zu speichern und wiederabzurufen und diese Informationen zu integrieren und in motorische Aktionen umzusetzen.rnWelche Neuronengruppen vermitteln zielgerichtete Orientierung im Gehirn einer Fliege? Welche sensorischen Informationen sind in einem gegebenen Kontext relevant und wie werden diese Informationen sowie gespeichertes Vorwissen in motorische Aktionen übersetzt? Wo findet im Gehirn der Übergang von der sensorischen Verarbeitung zur motorischen Kontrolle statt? rnDer Zentralkomplex, ein Verbund von vier Neuropilen des Zentralhirns von Drosophila melanogaster, fungiert als Übergang zwischen in den optischen Loben vorverarbeiteten visuellen Informationen und prämotorischem Ausgang. Die Neuropile sind die Protocerebralbrücke, der Fächerförmige Körper, der Ellipsoidkörper und die Noduli. rnIn der vorliegenden Arbeit konnte gezeigt werden, dass Fruchtfliegen ein räumliches Arbeitsgedächtnis besitzen. Dieses Gedächtnis kann aktuelle visuelle Information ersetzen, wenn die Sicht auf das Zielobjekt verloren geht. Dies erfordert die sensorische Wahrnehmung von Zielobjekten, die Speicherung der Position, die kontinuierliche Integration von Eigen-und Objektposition, sowie die Umsetzung der sensorischen Information in zielgerichtete Bewegung. Durch konditionale Expression von Tetanus Toxin mittels des GAL4/UAS/GAL80ts Systems konnte gezeigt werden, dass die Ringneurone, welche in den Ellipsoidkörper projizieren, für das Orientierungsgedächtnis notwendig sind. Außerdem konnte gezeigt werden, dass Fliegen, denen die ribosomale Serinkinase S6KII fehlt, die Richtung verlieren, sobald keine Objekte mehr sichtbar sind und, dass die partielle Rettung dieser Kinase ausschließlich in den Ringneuronenklassen R3 und R4d hinreichend ist, um das Gedächtnis wieder herzustellen. Bei dieser Gedächtnisleistung scheint es sich um eine idiothetische Form der Orientierung zu handeln. rn Während das räumliche Arbeitsgedächtnis nach Verschwinden von Objekten relevant ist, wurde in der vorliegende Arbeit auch die Vermittlung zielgerichteter Bewegung auf sichtbare Objekte untersucht. Dabei wurde die zentrale Frage bearbeitet, welche Neuronengruppen visuelle Orientierung vermitteln. Anhand von Gehirnstrukturmutanten konnte gezeigt werden, dass eine intakte Protocerebralbrücke notwendig ist, um Laufgeschwindigkeit, Laufaktivität und Zielgenauigkeit bei der Ansteuerung visueller Stimuli korrekt zu vermitteln. Dabei scheint das Horizontale Fasersystem, welches von der Protocerebralbrücke über den Fächerförmigen Körper auf den Zentralkomplex assoziierte Neuropile, die Ventralkörper, projiziert, notwendig für die lokomotorische Kontrolle und die zielgenaue Bewegung zu sein. Letzeres konnte zum einen durch Blockade der synaptischen Transmission anhand konditionaler Tetanus Toxin Expression mittels des GAL4/UAS/GAL80ts Systems im Horizontalen Fasersystem gezeigt werden;. zum anderen auch durch partielle Rettung der in den Strukturmutanten betroffenen Gene. rn Den aktuellen Ergebnissen und früheren Studien folgend, ergibt sich dabei ein Modell, wie zielgerichtete Bewegung auf visuelle Stimuli neuronal vermittelt werden könnte. Nach diesem Modell bildet die Protocerebralbrücke die Azimuthpositionen von Objekten ab und das Horizontale Fasersystem vermittelt die entsprechende lokomotorische Wo-Information für zielgerichtete Bewegungen. Die Eigenposition in Relation zum Zielobjekt wird über die Ringneurone und den Ellipsoidkörper vermittelt. Wenn das Objekt aus der Sicht verschwindet, kann die Relativposition ideothetisch ermittelt werden und integriert werden mit Vorinformation über das Zielobjekt, die im Fächerförmigen Körper abgelegt ist (Was-Information). Die resultierenden Informationen könnten dann über das Horizontale Fasersystem in den Ventralkörpern auf absteigende Neurone gelangen und in den Thorax zu den motorischen Zentren weitergeleitet werden.rn