3 resultados para microfluidic chip system
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Membranproteine spielen eine wichtige Rolle bei physiologischen Prozessen wie Signalweiterleitung oder Immunreaktion. Deshalb stehen sie im Fokus der pharmakologischen Wirkstoffentwicklung und es besteht großes Interesse, Membranproteinbasierte Biosensoren zu entwickeln, die sich z.B. als Screening-Plattformen eignen. Allerdings stellt die Handhabung von Membranproteinen wegen ihrer amphiphilen Struktur eine große Herausforderung dar. Membranproteine werden meist in Zellkultur oder in bakteriellen Expressionssystemen synthetisiert. Diese Verfahren liefern aber oft nur eine geringe Ausbeute und erlauben wenig Kontrolle über die Expressionsbedingungen. Als alternativer Ansatz bietet sich stattdessen die in vitro Synthese von Proteinen an, die in einer zellfreien Umgebung stattfindet. Ziel der vorliegenden Arbeit war die Etablierung eines miniaturisierten Analysesystems, das Aktivitätsmessungen an in vitro synthetisierten Ionenkanälen erlaubt. Dafür wurde ein Labon- Chip entwickelt, der elektrochemische und optische Nachweismethoden in parallelen Anätzen ermöglicht. Als amphiphile Umgebung für die Inkorporation von Membranproteinen wurden vier verschieden biomimetische Membranaufbauten hinsichtlich ihrer Dichtigkeit und ihrer Reproduzierbarkeit untersucht. Als Methode fanden insbesondere die Impedanzspektroskpie und die Oberflächenplasmonen-Resonanzspektroskopie Anwendung. Die peptide cushioned Bilyer Lipid Membranes (pcBLM) eignete sich dabei am besten für Untersuchungen an Membranproteinen. Zur Detektion der Ionenkanalaktivität wurde eine neue Messmethode etabliert, die auf der Messung der Impedanz bei fester Frequenz basiert und u.a. eine Aussage über die Änderung des Membranwiderstandes bei Aktivierung erlaubt. Am Beispiel des nicotinischen Acetylcholinrezeptors (nAchR) konnte gezeigt werden, dass sich die Aktivität von Ionenkanälen mit dem entwickelten Chip-System nachweisen ließ. Die Spezifität der Methode konnte durch verschiedene Kontrollen wie die Zugabe eines nicht-aktivierenden Liganden oder Inhibition des Rezeptors nachgewiesen werden. Weiterhin konnte die in vitro Synthese des Ionenkanals a7 nAchR durch Radioaktivmarkierung nachgewiesen werden. Die Inkorporation des Rezeptors in die biomimetischen Membranen wurde mit Immunodetektion und elektrochemischen Methoden untersucht. Es zeigte sich, dass die funktionelle Inkorporation des a7 nAchR davon abhing, welcher biomimetische Membranaufbau verwendet wurde.
Resumo:
Eine funktionierende Proteinqualitätskontrolle ist essenziell für die Vitalität einer Zelle. Das dynamische Gleichgewicht zwischen Proteinfaltung und -degradation wird von molekularen Chaperonen aufrechterhalten, deren Aktivität wiederum durch die Interaktion mit zahlreichen Cochaperonen moduliert wird. Das Cochaperon CHIP ist ein zentraler Faktor in Proteintriage-Entscheidungsprozessen, da es als Ubiquitinligase Chaperonsubstrate dem Abbau zuführt und somit die Chaperonmaschinerie direkt mit den Systemen der Proteindegradation verbindet. Um Polypeptide vor einem vorzeitigen Abbau zu schützen, wird die destruktive Aktivität von CHIP durch weitere Cochaperone reguliert. rnIn dieser Arbeit konnte die Hemmung der Ligaseaktivität von CHIP durch das Cochaperon BAG2 mechanistisch erstmals in einem zellulären System nachgewiesen werden. Dazu wurde die humane IMR-90 Fibroblasten Zelllinie verwendet. Die Ubiquitinierungsaktivität von CHIP wurde anhand von HSP72 als Modell-CHIP-Substrat untersucht. Durch die verringerte Ubiquitinierung, und damit dem reduzierten Abbau von HSP72, regulierte BAG2 dessen intrazelluläre Proteinspiegel, ohne dabei selbst eine Hitzeschockantwort zu induzieren. Überexprimiertes BAG2 wirkte sich trotz stabilisierter HSP72-Spiegel bei einem appliziertem Hitzestresses negativ auf die Zellvitalität aus, vermutlich da BAG2 durch die Inhibition von CHIP-vermittelter Ubiquitinierung massiv in das Gleichgewicht zwischen Substratfaltung und -degradation eingreift.rnDa sich die Mechanismen der Proteinqualitätskontrolle in der Alterung stark verändern und sich den wandelnden Bedingungen in der Zelle anpassen, wurde in einem zweiten Teil dieser Arbeit mit Hilfe des IMR-90 Zellsystems als etabliertes Modell zellulärer Seneszenz analysiert, inwieweit sich die Aktivität und die Regulation von CHIP durch BAG2 in der zellulären Alterung ändern. In seneszenten Zellen war HSP72 erheblich weniger ubiquitiniert als in jungen Fibroblasten, was auf eine reduzierte CHIP-Aktivität hinweist. Diese blieb jedoch durch BAG2 weiterhin modulierbar. Die Funktion von BAG2 als Inhibitor der Ubiquitinligase CHIP blieb demnach in seneszenten Zellen bestehen. In gealterten Fibroblasten regulierte BAG2 außerdem die Proteinspiegel des CHIP-Substrates und Seneszenzinitiators p53, was BAG2 eine mögliche Rolle in der Etablierung des Seneszenz-Phänotyps zuspricht. Weiterhin unterlagen die Proteinspiegel der beiden funktionell redundanten CHIP-Modulatoren BAG2 und HSPBP1 in der zellulären Alterung einer reziproken Regulation. In gealterten Mäusen trat die gegenläufige Veränderung der beiden Cochaperone gewebsspezifisch in der Lunge auf. Außerdem waren die BAG2-Proteinspiegel im Hippocampus gealterter Tiere signifikant erhöht.rnZusammenfassend konnte anhand der erzielten Ergebnisse die Funktion von BAG2 als Inhibitor von CHIP im zellulären System bestätigt werden. Außerdem durchlaufen die Aktivität und die Regulation von CHIP einen seneszenzspezifischen Adaptationsprozess, welcher für die Erhaltung der Proteostase in der Alterung relevant sein könnte und in welchem die Funktion von BAG2 als CHIP-Modulator möglicherweise eine wichtige Rolle spielt.rnZukünftige Studien könnten die komplexen Mechanismen weiterführend aufklären, mit denen CHIP-Aktivität reguliert wird. Dies kann helfen, der altersbedingten Abnahme an proteostatischer Kontrolle entgegenzuwirken und aberrante Proteinaggregation in altersassoziierten Erkrankungen vorzubeugen.rn
Resumo:
The lattice Boltzmann method is a popular approach for simulating hydrodynamic interactions in soft matter and complex fluids. The solvent is represented on a discrete lattice whose nodes are populated by particle distributions that propagate on the discrete links between the nodes and undergo local collisions. On large length and time scales, the microdynamics leads to a hydrodynamic flow field that satisfies the Navier-Stokes equation. In this thesis, several extensions to the lattice Boltzmann method are developed. In complex fluids, for example suspensions, Brownian motion of the solutes is of paramount importance. However, it can not be simulated with the original lattice Boltzmann method because the dynamics is completely deterministic. It is possible, though, to introduce thermal fluctuations in order to reproduce the equations of fluctuating hydrodynamics. In this work, a generalized lattice gas model is used to systematically derive the fluctuating lattice Boltzmann equation from statistical mechanics principles. The stochastic part of the dynamics is interpreted as a Monte Carlo process, which is then required to satisfy the condition of detailed balance. This leads to an expression for the thermal fluctuations which implies that it is essential to thermalize all degrees of freedom of the system, including the kinetic modes. The new formalism guarantees that the fluctuating lattice Boltzmann equation is simultaneously consistent with both fluctuating hydrodynamics and statistical mechanics. This establishes a foundation for future extensions, such as the treatment of multi-phase and thermal flows. An important range of applications for the lattice Boltzmann method is formed by microfluidics. Fostered by the "lab-on-a-chip" paradigm, there is an increasing need for computer simulations which are able to complement the achievements of theory and experiment. Microfluidic systems are characterized by a large surface-to-volume ratio and, therefore, boundary conditions are of special relevance. On the microscale, the standard no-slip boundary condition used in hydrodynamics has to be replaced by a slip boundary condition. In this work, a boundary condition for lattice Boltzmann is constructed that allows the slip length to be tuned by a single model parameter. Furthermore, a conceptually new approach for constructing boundary conditions is explored, where the reduced symmetry at the boundary is explicitly incorporated into the lattice model. The lattice Boltzmann method is systematically extended to the reduced symmetry model. In the case of a Poiseuille flow in a plane channel, it is shown that a special choice of the collision operator is required to reproduce the correct flow profile. This systematic approach sheds light on the consequences of the reduced symmetry at the boundary and leads to a deeper understanding of boundary conditions in the lattice Boltzmann method. This can help to develop improved boundary conditions that lead to more accurate simulation results.