5 resultados para measurement errors
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Die diffusionsgewichtete Magnetresonanztomographie (MRT) mit dem hyperpolarisierten Edelgas-Isotop 3He ist ein neues Verfahren zur Untersuchung von Erkrankungen der Atem-wege und der Lunge. Die Diffusionsbewegung der 3He-Atome in den Luftwegen der Lunge wird durch deren Wände begrenzt, wobei diese Einschränkung sowohl von den Dimensionen der Atemwege als auch von den Messparametern abhängt. Man misst daher einen scheinbaren Diffusionskoeffizienten (Apparent Diffusion Coefficient, ADC) der kleiner ist als der Diffusionskoeffizient bei freier Diffusion. Der ADC gestattet somit eine qualitative Abschät-zung der Größe der Luftwege und deren krankhafte Veränderung, ohne eine direkte Abbil-dung der Luftwege selbst. Eine dreidimensionale Abbildung der räumlichen Verteilung von Lungenschädigungen wird dadurch möglich. Ziel der vorliegenden Arbeit war es, ein tieferes physikalisch fundiertes Verständnis der 3He-Diffusionsmessung zu ermöglichen und die Methode der diffusionsgewichteten 3He-MRT hin zur Erfassung des kompletten 3He-Diffusionstensors weiterzuentwickeln. Dazu wurde systematisch im Rahmen von Phantom- und tierexperimentellen Studien sowie Patientenmes-sungen untersucht, inwieweit unterschiedliche Einflussfaktoren das Ergebnis der ADC-Messung beeinflussen. So konnte beispielsweise nachgewiesen werden, dass residuale Luftströmungen am Ende der Einatmung keinen Einfluss auf den ADC-Wert haben. Durch Simulationsrechnungen konnte gezeigt werden, in welchem Maße sich die durch den Anregungspuls hervorgerufene Abnah-me der Polarisation des 3He-Gases auf den gemessenen ADC-Wert auswirkt. In einer Studie an lungengesunden Probanden und Patienten konnte die Wiederholbarkeit der ADC-Messung untersucht werden, aber auch der Einfluss von Gravitationseffekten. Diese Ergebnisse ermöglichen genauere Angaben über systematische und statistische Messfehler, sowie über Grenzwerte zwischen normalem und krankhaft verändertem Lungengewebe. Im Rahmen dieser Arbeit wurde die bestehende diffusionsgewichtete Bildgebung methodisch zur Erfassung des kompletten Diffusionstensors von 3He in der Lunge weiterentwickelt. Dies war wichtig, da entlang der Luftwege weitestgehend freie Diffusion vorherrscht, während senkrecht zu den Luftwegen die Diffusion eingeschränkt ist. Mit Hilfe von Simulationsrech-nungen wurde der kritische Einfluss von Rauschen in den MRT-Bildern auf die Qualität der Messergebnisse untersucht. Diese neue Methodik wurde zunächst an einem Phantom beste-hend aus einem Bündel aus Glaskapillaren, deren innerer Durchmesser mit dem des mensch-lichen Azinus übereinstimmt, validiert. Es ergab sich eine gute Übereinstimmung zwischen theoretischen Berechnungen und experimentellen Ergebnissen. In ersten Messungen am Menschen konnten so unterschiedliche Anisotropiewerte zwischen lungengesunden Proban-den und Patienten gefunden werden. Es zeigte sich eine Tendenz zu isotroper Diffusion bei Patienten mit einem Lungenemphysem. Zusammenfassend tragen die Ergebnisse der vorliegenden Arbeit zu einem besseren Ver-ständnis der ADC-Messmethode bei und helfen zukünftige Studien aufgrund des tieferen Verständnisses der die 3He Messung beeinflussenden Faktoren besser zu planen.
Resumo:
Die Verifikation numerischer Modelle ist für die Verbesserung der Quantitativen Niederschlagsvorhersage (QNV) unverzichtbar. Ziel der vorliegenden Arbeit ist die Entwicklung von neuen Methoden zur Verifikation der Niederschlagsvorhersagen aus dem regionalen Modell der MeteoSchweiz (COSMO-aLMo) und des Globalmodells des Europäischen Zentrums für Mittelfristvorhersage (engl.: ECMWF). Zu diesem Zweck wurde ein neuartiger Beobachtungsdatensatz für Deutschland mit stündlicher Auflösung erzeugt und angewandt. Für die Bewertung der Modellvorhersagen wurde das neue Qualitätsmaß „SAL“ entwickelt. Der neuartige, zeitlich und räumlich hoch-aufgelöste Beobachtungsdatensatz für Deutschland wird mit der während MAP (engl.: Mesoscale Alpine Program) entwickelten Disaggregierungsmethode erstellt. Die Idee dabei ist, die zeitlich hohe Auflösung der Radardaten (stündlich) mit der Genauigkeit der Niederschlagsmenge aus Stationsmessungen (im Rahmen der Messfehler) zu kombinieren. Dieser disaggregierte Datensatz bietet neue Möglichkeiten für die quantitative Verifikation der Niederschlagsvorhersage. Erstmalig wurde eine flächendeckende Analyse des Tagesgangs des Niederschlags durchgeführt. Dabei zeigte sich, dass im Winter kein Tagesgang existiert und dies vom COSMO-aLMo gut wiedergegeben wird. Im Sommer dagegen findet sich sowohl im disaggregierten Datensatz als auch im COSMO-aLMo ein deutlicher Tagesgang, wobei der maximale Niederschlag im COSMO-aLMo zu früh zwischen 11-14 UTC im Vergleich zu 15-20 UTC in den Beobachtungen einsetzt und deutlich um das 1.5-fache überschätzt wird. Ein neues Qualitätsmaß wurde entwickelt, da herkömmliche, gitterpunkt-basierte Fehlermaße nicht mehr der Modellentwicklung Rechnung tragen. SAL besteht aus drei unabhängigen Komponenten und basiert auf der Identifikation von Niederschlagsobjekten (schwellwertabhängig) innerhalb eines Gebietes (z.B. eines Flusseinzugsgebietes). Berechnet werden Unterschiede der Niederschlagsfelder zwischen Modell und Beobachtungen hinsichtlich Struktur (S), Amplitude (A) und Ort (L) im Gebiet. SAL wurde anhand idealisierter und realer Beispiele ausführlich getestet. SAL erkennt und bestätigt bekannte Modelldefizite wie das Tagesgang-Problem oder die Simulation zu vieler relativ schwacher Niederschlagsereignisse. Es bietet zusätzlichen Einblick in die Charakteristiken der Fehler, z.B. ob es sich mehr um Fehler in der Amplitude, der Verschiebung eines Niederschlagsfeldes oder der Struktur (z.B. stratiform oder kleinskalig konvektiv) handelt. Mit SAL wurden Tages- und Stundensummen des COSMO-aLMo und des ECMWF-Modells verifiziert. SAL zeigt im statistischen Sinne speziell für stärkere (und damit für die Gesellschaft relevante Niederschlagsereignisse) eine im Vergleich zu schwachen Niederschlägen gute Qualität der Vorhersagen des COSMO-aLMo. Im Vergleich der beiden Modelle konnte gezeigt werden, dass im Globalmodell flächigere Niederschläge und damit größere Objekte vorhergesagt werden. Das COSMO-aLMo zeigt deutlich realistischere Niederschlagsstrukturen. Diese Tatsache ist aufgrund der Auflösung der Modelle nicht überraschend, konnte allerdings nicht mit herkömmlichen Fehlermaßen gezeigt werden. Die im Rahmen dieser Arbeit entwickelten Methoden sind sehr nützlich für die Verifikation der QNV zeitlich und räumlich hoch-aufgelöster Modelle. Die Verwendung des disaggregierten Datensatzes aus Beobachtungen sowie SAL als Qualitätsmaß liefern neue Einblicke in die QNV und lassen angemessenere Aussagen über die Qualität von Niederschlagsvorhersagen zu. Zukünftige Anwendungsmöglichkeiten für SAL gibt es hinsichtlich der Verifikation der neuen Generation von numerischen Wettervorhersagemodellen, die den Lebenszyklus hochreichender konvektiver Zellen explizit simulieren.
Resumo:
The interaction between aerosols and sun light plays an important role in the radiative balance of Earth’s atmosphere. This interaction is obtained by measuring the removal (extinction), redistribution (scattering), and transformation into heat (absorption) of light by the aerosols; i.e. their optical properties. Knowledge of these properties is crucial for our understanding of the atmospheric system. rn Light absorption by aerosols is a major contributor to the direct and indirect effects on our climate system, and an accurate and sensitive measurement method is crucial to further our understanding. A homebuilt photoacoustic sensor (PAS), measuring at a 532nm wavelength, was fully characterized and its functionality validated for measurements of absorbing aerosols. The optical absorption cross-sections of absorbing polystyrene latex spheres, to be used as a standard for aerosol absorption measurements, were measured and compared to literature values. Additionally, a calibration method using absorbing aerosol of known complex refractive index was presented.rn A new approach to retrieve the effective broadband refractive indices (mbroad,eff) of aerosol particles by a white light aerosol spectrometer (WELAS) optical particle counter (OPC) was achieved. Using a tandem differential mobility analyzer (DMA)-OPC system, the nbroad,eff are obtained for both laboratory and field applications. This method was tested in the laboratory using substances with a wide range of optical properties and it was used in ambient measurements to retrieve the nbroad,eff of biomass burning aerosols in a nationwide burning event in Israel. The retrieved effective broadband refractive indices for laboratory generated scattering aerosols were: ammonium sulfate (AS), glutaric acid (GA), and sodium chloride, all within 4% of literature values. For absorbing substances, nigrosine and various mixtures of nigrosine with AS and GA were measured, as well as a lightly absorbing substance, Suwannee river fulvic acid (SRFA). For the ambient measurements, the calibration curves generated from this method were to follow the optical evolution of biomass burning (BB) aerosols. A decrease in the overall aerosol absorption and scattering for aged aerosols during the day after the fires compared to the smoldering phase of the fires was found. rn The connection between light extinction of aerosols, their chemical composition and hygroscopicity for particles with different degrees of absorption was studied. The extinction cross-section (σext) at 532nm for different mobility diameters was measured at 80% and 90% relative humidity (RH), and at an RH<10%. The ratio of the humidified aerosols to the dry ones, fRHext(%RH,Dry), is presented. For purely scattering aerosols, fRHext(%RH,Dry) is inversely proportional with size; this dependence was suppressed for lightly absorbing ones. In addition, the validity of the mixing rules for water soluble absorbing aerosols is explored. The difference between the derived and calculated real parts of the complex RIs were less than 5.3% for all substances, wavelengths, and RHs. The obtained imaginary parts for the retrieved and calculated RIs were in good agreement with each other, and well within the measurement errors of retrieval from pulsed CRD spectroscopy measurements. Finally, a core-shell structure model is also used to explore the differences between the models, for substances with low growth factors, under these hydration conditions. It was found that at 80% RH and for size parameters less than 2.5, there is less than a 5 % difference between the extinction efficiencies calculated with both models. This difference is within measurement errors; hence, there is no significant difference between the models in this case. However, for greater size parameters the difference can be up to 10%. For 90% RH the differences below a size parameter of 2.5 were up to 7%.rn Finally, the fully characterized PAS together with a cavity ring down spectrometer (CRD), were used to study the optical properties of soot and secondary organic aerosol (SOA) during the SOOT-11 project in the AIDA chamber in Karlsruhe, Germany. The fresh fractal-like soot particles were allowed to coagulate for 28 hours before stepwise coating them with SOA. The single scattering albedo for fresh fractal-like soot was measured to be 0.2 (±0.03), and after allowing the soot to coagulate for 28 hours and coating it with SOA, it increased to 0.71(±0.01). An absorption enhancement of the coated soot of up to 1.71 (±0.03) times from the non-coated coagulated soot was directly measured with the PAS. Monodisperse measurements of SOA and soot coated with SOA were performed to derive the complex refractive index (m) of both aerosols. A complex refractive index of m = 1.471(±0.008) + i0.0(±0.002) for the SOA-αO3 was retrieved. For the compact coagulated soot a preliminary complex refractive index of m = 2.04(+0.21/-0.14) + i0.34(+0.18/-0.06) with 10nm(+4/-6) coating thickness was retrieved.rn These detail properties can be use by modelers to decrease uncertainties in assessing climatic impacts of the different species and to improve weather forecasting.rn
Resumo:
Polare Stratosphärenwolken (PSC), die unterhalb einer Temperatur von etwa -78 °C in polaren Regionen auftreten, üben einen starken Einfluss auf die stratosphärische Ozonschicht aus. Dieser Einfluss erfolgt größtenteils über heterogene chemische Reaktionen, die auf den Oberflächen von Wolkenpartikeln stattfinden. Chemische Reaktionen die dabei ablaufen sind eine Voraussetzung für den späteren Ozonabbau. Des Weiteren verändert die Sedimentation der Wolkenpartikel die chemische Zusammensetzung bzw. die vertikale Verteilung der Spurengase in der Stratosphäre. Für die Ozonchemie spielt dabei die Beseitigung von reaktivem Stickstoff durch Sedimentation Salpetersäure-haltiger Wolkenpartikeln (Denitrifizierung) eine wichtige Rolle. Durch gleichen Sedimentationsprozess von PSC Elementen wird der Stratosphäre des weiteren Wasserdampf entzogen (Dehydrierung). Beide Prozesse begünstigen einen länger andauernden stratosphärischen Ozonabbau im polaren Frühling.rnGerade im Hinblick auf die Denitrifikation durch Sedimentation größerer PSC-Partikel werden in dieser Arbeit neue Resultate von in-situ Messungen vorgestellt, die im Rahmen der RECONCILE-Kampagne im Winter des Jahres 2010 an Bord des Höhenforschungs-Flugzeugs M-55 Geophysica durchgeführt wurden. Dabei wurden in fünf Flügen Partikelgrößenverteilungen in einem Größenbereich zwischen 0,5 und 35 µm mittels auf der Lichtstreuung basierender Wolkenpartikel-Spektrometer gemessen. Da polare Stratosphärenwolken in Höhen zwischen 17 und 30 km auftreten, sind in-situ Messungen vergleichsweise selten, so dass noch einige offene Fragen bestehen bleiben. Gerade Partikel mit optischen Durchmessern von bis zu 35µm, die während der neuen Messungen detektiert wurden, müssen mit theoretischen Einschränkungen in Einklang gebracht werden. Die Größe der Partikel wird dabei durch die Verfügbarkeit der beteiligten Spurenstoffe (Wasserdampf und Salpetersäure), die Sedimentationsgeschwindigkeit, Zeit zum Anwachsen und von der Umgebungstemperatur begrenzt. Diese Faktoren werden in der vorliegenden Arbeit diskutiert. Aus dem gemessenen Partikelvolumen wird beispielsweise unter der Annahme der NAT-Zusammensetzung (Nitric Acid Trihydrate) die äquivalente Konzentration des HNO 3 der Gasphase berechnet. Im Ergebnis wird die verfügbare Konzentration von Salpetersäure der Stratosphäre überschritten. Anschließend werden Hypothesen diskutiert, wodurch das gemessene Partikelvolumen überschätzt worden sein könnte, was z.B. im Fall einer starken Asphärizität der Partikel möglich wäre. Weiterhin wurde eine Partikelmode unterhalb von 2-3µm im Durchmesser aufgrund des Temperaturverhaltens als STS (Supercooled Ternary Solution droplets) identifiziert.rnUm die Konzentration der Wolkenpartikel anhand der Messung möglichst genau berechnen zu können, muss das Messvolumen bzw. die effektive Messfläche der Instrumente bekannt sein. Zum Vermessen dieser Messfläche wurde ein Tröpfchengenerator aufgebaut und zum Kalibrieren von drei Instrumenten benutzt. Die Kalibration mittels des Tröpfchengenerators konzentrierte sich auf die Cloud Combination Probe (CCP). Neben der Messfläche und der Größenbestimmung der Partikel werden in der Arbeit unter Zuhilfenahme von Messungen in troposphärischen Wolken und an einer Wolkensimulationskammer auch weitere Fehlerquellen der Messung untersucht. Dazu wurde unter anderem die statistische Betrachtung von Intervallzeiten einzelner Messereignisse, die in neueren Sonden aufgezeichnet werden, herangezogen. Letzteres ermöglicht es, Messartefakte wie Rauschen, Koinzidenzfehler oder „Shattering“ zu identifizieren.rn
Resumo:
Die Materialverfolgung gewinnt in der Metallindustrie immer mehr an Bedeutung:rnEs ist notwendig, dass ein Metallband im Fertigungsprozess ein festgelegtes Programm durchläuft - erst dann ist die Qualität des Endprodukts garantiert. Die bisherige Praxis besteht darin, jedem Metallband eine Nummer zuzuordnen, mit der dieses Band beschriftet wird. Bei einer tagelangen Lagerung der Bänder zwischen zwei Produktionsschritten erweist sich diese Methode als fehleranfällig: Die Beschriftungen können z.B. verloren gehen, verwechselt, falsch ausgelesen oder unleserlich werden. 2007 meldete die iba AG das Patent zur Identifikation der Metallbänder anhand ihres Dickenprofils an (Anhaus [3]) - damit kann die Identität des Metallbandes zweifelsfrei nachgewiesen werden, eine zuverlässige Materialverfolgung wurde möglich.Es stellte sich jedoch heraus, dass die messfehlerbehafteten Dickenprofile, die als lange Zeitreihen aufgefasst werden können, mit Hilfe von bisherigen Verfahren (z.B. L2-Abstandsminimierung oder Dynamic Time Warping) nicht erfolgreich verglichen werden können.Diese Arbeit stellt einen effizienten feature-basierten Algorithmus zum Vergleichrnzweier Zeitreihen vor. Er ist sowohl robust gegenüber Rauschen und Messausfällen als auch invariant gegenüber solchen Koordinatentransformationen der Zeitreihen wie Skalierung und Translation. Des Weiteren sind auch Vergleiche mit Teilzeitreihen möglich. Unser Framework zeichnet sich sowohl durch seine hohe Genauigkeit als auch durch seine hohe Geschwindigkeit aus: Mehr als 99.5% der Anfragen an unsere aus realen Profilen bestehende Testdatenbank werden richtig beantwortet. Mit mehreren hundert Zeitreihen-Vergleichen pro Sekunde ist es etwa um den Faktor 10 schneller als die auf dem Gebiet der Zeitreihenanalyse etablierten Verfahren, die jedoch nicht im Stande sind, mehr als 90% der Anfragen korrekt zu verarbeiten. Der Algorithmus hat sich als industrietauglich erwiesen. Die iba AG setzt ihn in einem weltweit einzigartigen dickenprofilbasierten Überwachungssystemrnzur Materialverfolgung ein, das in ersten Stahl- und Aluminiumwalzwerkenrnbereits erfolgreich zum Einsatz kommt.