8 resultados para major epitope on CII
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Ziel der vorliegenden Arbeit war die Untersuchung von Struktur und Dynamik in Polymer-Ton-Nanokompositen mittels EPR-Spektroskopie; damit sollten ein Beitrag zur Analyse der Tensidschicht in solchen Systemen geleistet und die Ergebnisse anderer Messmethoden ergänzt werden. Die Tensidschicht in Polymer-Ton-Nanokompositen nimmt großen Einfluss auf das System, denn sie bestimmt die Wechselwirkung zwischen Ton und Polymer: Damit hydrophiler Ton gut mit hydrophobem Polymer (hier Polystyrol) mischbar ist, muss das Schichtsilikat zunächst mit Tensiden organisch-modifiziert werden; dies geschieht durch Kationenaustausch der Natriumionen im Ton gegen Tenside. Um mit Hilfe der EPR einen Einblick in die Tensidschicht zu gewinnen, muss etwa 1% der zur Tonmodifizierung eingesetzten Amphiphile spinmarkiert sein. So gelang es im Rahmen dieser Arbeit, Tenside mit verschiedenen Kopfgruppen, nämlich Trimethylammonium- bzw. Trimethylphosphoniumtenside, zu synthetisieren und sie an verschiedenen Positionen ihrer hydrophoben Alkylkette mit einem Nitroxidradikal zu markieren. Das Nitroxidradikal diente als Spinsonde für die EPR-Experimente. Neben der Synthese verschiedener, spinmarkierter Amphiphile, der anschließenden Darstellung organisch-modifizierten Tons (Kationenaustausch) und verschiedener Polymer-Ton-Nanokomposite (Schmelzinterkalation) wurden alle Proben mittels EPR-Spektroskopie untersucht; dabei wurden sowohl cw- als auch gepulste Messtechniken eingesetzt. Aus cw-Experimenten ging hervor, dass die Dynamik der gesamten Tensidschicht mit der Temperatur zunimmt und die Mobilität der hydrophoben Tensidalkylkette mit wachsendem Abstand zu ihrer Kopfgruppe wächst. Zugabe von Polymer behindert bei steigender Temperatur das Anschwellen des Tons bei Aufschmelzen der Tensidschicht; die Dynamik des Systems ist eingeschränkt. Mit Hilfe gepulster EPR-Messungen (ENDOR und ESEEM), die Informationen über Abstände bzw. Kontakt in den untersuchten Systemen lieferten, ließ sich ein Strukturmodell der Polymer-Ton-Nanokomposite skizzieren, das Vorstellungen anderer, älterer Methoden unterstützt: Hierbei richten sich die Tenside in Multischichten unterschiedlicher Mobilität parallel zur Tonoberfläche aus.
Resumo:
Die DNA-Doppelhelix ist eine relativ dicke (Ø ≈ 2 nm), kompakte und dadurch auf kurzen Längenskalen relativ steife Verbindung (lp[dsDNA] ≈ 50-60 nm), mit einer klar definierten Struktur, die durch biologische Methoden sehr präzise manipuliert werden kann. Die Auswirkungen der primären Sequenz auf die dreidimensionale Strukturbildung ist gut verstanden und exakt vorhersagbar. Des Weiteren kann DNA an verschiedenen Stellen mit anderen Molekülen verknüpft werden, ohne dass ihre Selbsterkennung gestört wird. Durch die helikale Struktur besteht außerdem ein Zusammenhang zwischen der Lage und der räumlichen Orientierung von eingeführten Modifikationen. Durch moderne Syntheseverfahren lassen sich beliebige Oligonukleotidsequenzen im Bereich bis etwa 150-200 Basen relativ preiswert im Milligrammmaßstab herstellen. Diese Eigenschaften machen die DNA zu einem idealen Kandidaten zur Erzeugung komplexer Strukturen, die durch Selbsterkennung der entsprechenden Sequenzen gebildet werden. In der hier vorgelegten Arbeit wurden einzelsträngige DNA-Abschnitte (ssDNA) als adressierbare Verknüpfungsstellen eingesetzt, um verschiedene molekulare Bausteine zu diskreten nicht periodischen Strukturen zu verbinden. Als Bausteine dienten flexible synthetische Polymerblöcke und semiflexible Doppelstrang-DNA-Abschnitte (dsDNA), die an beiden Enden mit unterschiedlichen Oligonukleotidsequenzen „funktionalisiert“ sind. Die zur Verknüpfung genutzten Oligonukleotidabschnitte wurden so gewählt (n > 20 Basen), dass ihre Hybridisierung zu einer bei Raumtemperatur stabilen Doppelstrangbildung führt. Durch Kombination der Phosphoramiditsynthese von DNA mit einer festkörpergestützten Blockkopplungsreaktion konnte am Beispiel von Polyethylenoxiden ein sehr effektiver Syntheseweg zur Herstellung von ssDNA1-PEO-ssDNA2-Triblockcopolymeren entwickelt werden, der sich problemlos auf andere Polymere übertragen lassen sollte. Die Längen und Basenabfolgen der beiden Oligonukleotidsequenzen können dabei unabhängig voneinander frei gewählt werden. Somit wurden die Voraussetzungen geschaffen, um die Selbsterkennung von Oligonukleotiden durch Kombination verschiedener Triblockcopolymere zur Erzeugung von Multiblockcopolymeren zu nutzen, die mit klassischen Synthesetechniken nicht zugänglich sind. Semiflexible Strukturelemente lassen sich durch die Synthese von Doppelstrangfragmenten mit langen überstehenden Enden (sticky-ends) realisieren. Die klassischen Ansätze der molekularen Genetik zur Erzeugung von sticky-ends sind in diesem Fall nicht praktikabel, da sie zu Einschränkungen im Bezug auf Länge und Sequenz der überhängenden Enden führen. Als Methode der Wahl haben sich zwei verschiedene Varianten der Polymerase Kettenreaktion (PCR) erwiesen, die auf der Verwendung von teilkomplementären Primern beruhen. Die eigentlichen Primersequenzen wurden am 5´-Ende entweder über ein 2´-Desoxyuridin oder über einen kurzen Polyethylenoxid-Spacer (n = 6) mit einer frei wählbaren „sticky-end-Sequenz“ verknüpft. Mit diesen Methoden sind sowohl 3´- als auch 5´-Überhänge zugänglich und die Länge der Doppelstrangabschnitte kann über einen breiten Molmassenbereich sehr exakt eingestellt werden. Durch Kombination derartiger Doppelstrangfragmente mit den biosynthetischen Triblockcopolymeren lassen sich Strukturen erzeugen, die als Modellsysteme zur Untersuchung verschiedener Biomoleküle genutzt werden können, die in Form eines mehrfach gebrochenen Stäbchens vorliegen. Im letzten Abschnitt wurde gezeigt, dass durch geeignete Wahl der überstehenden Enden bzw. durch Hybridisierung der Doppelstrangfragmente mit passenden Oligonukleotiden verzweigte DNA-Strukturen mit Armlängen von einigen hundert Nanometern zugänglich sind. Im Vergleich zu den bisher veröffentlichten Methoden bietet diese Herangehensweise zwei entscheidende Vorteile: Zum einen konnte der Syntheseaufwand auf ein Minimum reduziert werden, zum anderen ist es auf diesem Weg möglich die Längen der einzelnen Arme, unabhängig voneinander, über einen breiten Molmassenbereich zu variieren.
Resumo:
In der vorliegenden Arbeit wurden die durch Training induzierten motorischen Gedächtnisleistungen der Taufliege Drosophila melanogaster beim Überklettern von acht symmetrisch verteilten Lücken auf einem rotierenden Ring untersucht. Durch den auf sie einwirkenden optischen Fluss der vorbeiziehenden äußeren Umgebung wurden die Fliegen angeregt, diesem optomotorischen Reiz entgegenzuwirken und die Lücken laufend zu überqueren. Durch Training verbessert und langfristig gelernt wird die kompensatorische Lückenüberquerung X+ gegen die Rotation. In der aus diesem Training erhaltenen Lernkurve war eine überdurchschnittlich hohe Leistungsverbesserung nach einem einzigen Trainingslauf mit einem zeitlichen Bestand von ca. 40 Minuten abzulesen, um danach vom motorischen Gedächtnisspeicher trainierter Fliegen nicht mehr abgerufen werden zu können. Nach einer Ruhephase von einem bis mehreren Tagen wurden die Fliegen auf mögliche Langzeitlernleistungen untersucht und diese für verschiedene Intervalle nachgewiesen. Sowohl die Leistungsverbesserung während des Trainings, als auch der Lerneffekt nach 24h bleiben in mutanten rutabaga2080 sowie rut1 Fliegen aus. Betroffen ist das Gen der Adenylylzyklase I, ein Schlüsselprotein der cAMP-Signalkaskade, die u.a. im olfaktorischen und visuellen Lernen gebraucht wird. Damit ergab sich die Möglichkeit die motorischen Gedächtnisformen durch partielle Rettung zu kartieren. Die motorische Gedächtniskonsolidierung ist schlafabhängig. Wie sich herausstellte, benötigen WTB Fliegen nur eine Dunkelphase von 10h zwischen einem ersten Trainingslauf und einem Testlauf um signifikante Leistungssteigerungen zu erzielen. In weiterführenden Versuchen wurden die Fliegen nachts sowie tagsüber mit einer LED-Lampe oder in einer Dunkelkammer, mit einem Kreisschüttler oder einer Laborwippe depriviert, mit dem Ergebnis, dass nur jene Fliegen ihre Leistung signifikant gegenüber einem ersten Trainingslauf verbessern konnten, welche entweder ausschließlich der Dunkelheit ausgesetzt waren oder welchen die Möglichkeit gegeben wurde, ein Gedächtnis zunächst in einer natürlichen Schlafphase zu konsolidieren (21Uhr bis 7Uhr MEZ). In weiteren Experimenten wurden die experimentellen Bedingungen entweder während des Trainings oder des Tests auf eine Fliege und damit verbunden auf eine erst durch das Training mögliche motorische Gedächtniskonsolidierung einwirken zu können, untersucht. Dazu wurden die Experimentparameter Lückenweite, Rotationsrichtung des Lückenringes, Geschwindigkeit des Lückenringes sowie die Verteilung der acht Lücken auf dem Ring (symmetrisch, asymmetrisch) im Training oder beim Gedächtnisabruf im Testlauf verändert. Aus den Ergebnissen kann geschlussfolgert werden, dass die Lückenweite langzeitkonsolidiert wird, die Rotationsrichtung kurzzeitig abgespeichert wird und die Drehgeschwindigkeit motivierend auf die Fliegen wirkt. Die symmetrische Verteilung der Lücken auf dem Ring dient der Langzeitkonsolidierung und ist als Trainingseingang von hoher Wichtigkeit. Mit Hilfe verschiedener Paradigmen konnten die Leistungsverbesserungen der Fliegen bei Abruf eines Kurz- bzw. Langzeitgedächtnisses hochauflösend betrachtet werden (Transfer). Die Konzentration, mit der eine WTB Fliege eine motorische Aufgabe - die Überquerung von Lücken entgegengesetzt der Rotationsrichtung - durchführt, konnte mit Hilfe von Distraktoreizen bestimmt werden. Wie sich herausstellte, haben Distraktoren einen Einfluss auf die Erfolgsquote einer Überquerung, d.h. mit zunehmender Distraktionsstärke nahm die Wahrscheinlichkeit einer Lückenüberquerung ab. Die Ablenkungsreize wirkten sich weiterhin auf die Vermessung einer Lücke aus, in dem entweder "peering"-artigen Bewegungen im Training durchgeführt wurden oder je nach Reizstärke ausschließlich nur jene Lücken vermessen wurden, welche auch überquert werden sollten.
Resumo:
Ein wesentlicher Anteil an organischem Kohlenstoff, der in der Atmosphäre vorhanden ist, wird als leichtflüchtige organische Verbindungen gefunden. Diese werden überwiegend durch die Biosphäre freigesetzt. Solche biogenen Emissionen haben einen großen Einfluss auf die chemischen und physikalischen Eigenschaften der Atmosphäre, indem sie zur Bildung von bodennahem Ozon und sekundären organischen Aerosolen beitragen. Um die Bildung von bodennahem Ozon und von sekundären organischen Aerosolen besser zu verstehen, ist die technische Fähigkeit zur genauen Messung der Summe dieser flüchtigen organischen Substanzen notwendig. Häufig verwendete Methoden sind nur auf den Nachweis von spezifischen Nicht-Methan-Kohlenwasserstoffverbindungen fokussiert. Die Summe dieser Einzelverbindungen könnte gegebenenfalls aber nur eine Untergrenze an atmosphärischen organischen Kohlenstoffkonzentrationen darstellen, da die verfügbaren Methoden nicht in der Lage sind, alle organischen Verbindungen in der Atmosphäre zu analysieren. Einige Studien sind bekannt, die sich mit der Gesamtkohlenstoffbestimmung von Nicht-Methan-Kohlenwasserstoffverbindung in Luft beschäftigt haben, aber Messungen des gesamten organischen Nicht-Methan-Verbindungsaustauschs zwischen Vegetation und Atmosphäre fehlen. Daher untersuchten wir die Gesamtkohlenstoffbestimmung organische Nicht-Methan-Verbindungen aus biogenen Quellen. Die Bestimmung des organischen Gesamtkohlenstoffs wurde durch Sammeln und Anreichern dieser Verbindungen auf einem festen Adsorptionsmaterial realisiert. Dieser erste Schritt war notwendig, um die stabilen Gase CO, CO2 und CH4 von der organischen Kohlenstofffraktion zu trennen. Die organischen Verbindungen wurden thermisch desorbiert und zu CO2 oxidiert. Das aus der Oxidation entstandene CO2 wurde auf einer weiteren Anreicherungseinheit gesammelt und durch thermische Desorption und anschließende Detektion mit einem Infrarot-Gasanalysator analysiert. Als große Schwierigkeiten identifizierten wir (i) die Abtrennung von CO2 aus der Umgebungsluft von der organischen Kohlenstoffverbindungsfaktion während der Anreicherung sowie (ii) die Widerfindungsraten der verschiedenen Nicht-Methan-Kohlenwasserstoff-verbindungen vom Adsorptionsmaterial, (iii) die Wahl des Katalysators sowie (iiii) auftretende Interferenzen am Detektor des Gesamtkohlenstoffanalysators. Die Wahl eines Pt-Rd Drahts als Katalysator führte zu einem bedeutenden Fortschritt in Bezug auf die korrekte Ermittlung des CO2-Hintergrund-Signals. Dies war notwendig, da CO2 auch in geringen Mengen auf der Adsorptionseinheit während der Anreicherung der leichtflüchtigen organischen Substanzen gesammelt wurde. Katalytische Materialien mit hohen Oberflächen stellten sich als unbrauchbar für diese Anwendung heraus, weil trotz hoher Temperaturen eine CO2-Aufnahme und eine spätere Abgabe durch das Katalysatormaterial beobachtet werden konnte. Die Methode wurde mit verschiedenen leichtflüchtigen organischen Einzelsubstanzen sowie in zwei Pflanzenkammer-Experimenten mit einer Auswahl an VOC-Spezies getestet, die von unterschiedlichen Pflanzen emittiert wurden. Die Pflanzenkammer-messungen wurden durch GC-MS und PTR-MS Messungen begleitet. Außerdem wurden Kalibrationstests mit verschiedenen Einzelsubstanzen aus Permeations-/Diffusionsquellen durchgeführt. Der Gesamtkohlenstoffanalysator konnte den tageszeitlichen Verlauf der Pflanzenemissionen bestätigen. Allerdings konnten Abweichungen für die Mischungsverhältnisse des organischen Gesamtkohlenstoffs von bis zu 50% im Vergleich zu den begleitenden Standardmethoden beobachtet werden.
Resumo:
Makromolekulare Wirkstoffträgersysteme sind von starkem Interesse bezüglich der klinischen Anwendung chemotherapeutischer Agenzien. Um ihr klinisches Potential zu untersuchen ist es von besonderer Bedeutung das pharmakokinetische Profil in vivo zu bestimmen. Jede Veränderung der Polymerstruktur beeinflusst die Körperverteilung des entsprechenden Makromoleküls. Aufgrund dessen benötigt man detailliertes Wissen über Struktur-Eigenschaftsbeziehungen im lebenden Organismus, um das Nanocarrier System für zukünftige Anwendungen einzustellen. In dieser Beziehung stellt das präklinische Screening mittels radioaktiver Markierung und Positronen-Emissions-Tomographie eine nützliche Methode für schnelle sowie quantitative Beobachtung von Wirkstoffträgerkandidaten dar. Insbesondere poly(HPMA) und PEG sind im Arbeitsgebiet Polymer-basierter Therapeutika stark verbreitet und von ihnen abgeleitete Strukturen könnten neue Generationen in diesem Forschungsbereich bieten.rnDie vorliegende Arbeit beschreibt die erfolgreiche Synthese verschiedener HPMA und PEG basierter Polymer-Architekturen – Homopolymere, Statistische und Block copolymere – die mittels RAFT und Reaktivesterchemie durchgeführt wurde. Des Weiteren wurden die genannten Polymere mit Fluor-18 und Iod-131 radioaktiv markiert und mit Hilfe von microPET und ex vivo Biodistributionsstudien in tumortragenden Ratten biologisch evaluiert. Die Variation in Polymer-Architektur und darauffolgende Analyse in vivo resultierte in wichtige Schlussfolgerungen. Das hydrophile / lipophile Gleichgewicht hatte einen bedeutenden Einfluss auf das pharmakokinetische Profil, mit besten in vivo Eigenschaften (geringe Aufnahme in Leber und Milz sowie verlängerte Blutzirkulationszeit) für statistische HPMA-LMA copolymere mit steigendem hydrophoben Anteil. Außerdem zeigten Langzeitstudien mit Iod-131 eine verstärkte Retention von hochmolekularen, HPMA basierten statistischen Copolymeren im Tumorgewebe. Diese Beobachtung bestätigte den bekannten EPR-Effekt. Hinzukommend stellen Überstrukturbildung und damit Polymergröße Schlüsselfaktoren für effizientes Tumor-Targeting dar, da Polymerstrukturen über 200 nm in Durchmesser schnell vom MPS erkannt und vom Blutkreislauf eliminiert werden. Aufgrund dessen wurden die hier synthetisierten HPMA Block copolymere mit PEG Seitengruppen chemisch modifiziert, um eine Verminderung in Größe sowie eine Reduktion in Blutausscheidung zu induzieren. Dieser Ansatz führte zu einer erhöhten Tumoranreicherung im Walker 256 Karzinom Modell. Generell wird die Körperverteilung von HPMA und PEG basierten Polymeren stark durch die Polymer-Architektur sowie das Molekulargewicht beeinflusst. Außerdem hängt ihre Effizienz hinsichtlich Tumorbehandlung deutlich von den individuellen Charakteristika des einzelnen Tumors ab. Aufgrund dieser Beobachtungen betont die hier vorgestellte Dissertation die Notwendigkeit einer detaillierten Polymer-Charakterisierung, kombiniert mit präklinischem Screening, um polymere Wirkstoffträgersysteme für individualisierte Patienten-Therapie in der Zukunft maßzuschneidern.rn
Resumo:
ZusammenfassungDie Bildung von mittelozeanischen Rückenbasalten (MORB) ist einer der wichtigsten Stoffflüsse der Erde. Jährlich wird entlang der 75.000 km langen mittelozeanischen Rücken mehr als 20 km3 neue magmatische Kruste gebildet, das sind etwa 90 Prozent der globalen Magmenproduktion. Obwohl ozeanische Rücken und MORB zu den am meisten untersuchten geologischen Themenbereichen gehören, existieren weiterhin einige Streit-fragen. Zu den wichtigsten zählt die Rolle von geodynamischen Rahmenbedingungen, wie etwa Divergenzrate oder die Nähe zu Hotspots oder Transformstörungen, sowie der absolute Aufschmelzgrad, oder die Tiefe, in der die Aufschmelzung unter den Rücken beginnt. Diese Dissertation widmet sich diesen Themen auf der Basis von Haupt- und Spurenelementzusammensetzungen in Mineralen ozeanischer Mantelgesteine.Geochemische Charakteristika von MORB deuten darauf hin, dass der ozeanische Mantel im Stabilitätsfeld von Granatperidotit zu schmelzen beginnt. Neuere Experimente zeigen jedoch, dass die schweren Seltenerdelemente (SEE) kompatibel im Klinopyroxen (Cpx) sind. Aufgrund dieser granatähnlichen Eigenschaft von Cpx wird Granat nicht mehr zur Erklärung der MORB Daten benötigt, wodurch sich der Beginn der Aufschmelzung zu geringeren Drucken verschiebt. Aus diesem Grund ist es wichtig zu überprüfen, ob diese Hypothese mit Daten von abyssalen Peridotiten in Einklang zu bringen ist. Diese am Ozeanboden aufgeschlossenen Mantelfragmente stellen die Residuen des Aufschmelz-prozesses dar, und ihr Mineralchemismus enthält Information über die Bildungs-bedingungen der Magmen. Haupt- und Spurenelementzusammensetzungen von Peridotit-proben des Zentralindischen Rückens (CIR) wurden mit Mikrosonde und Ionensonde bestimmt, und mit veröffentlichten Daten verglichen. Cpx der CIR Peridotite weisen niedrige Verhältnisse von mittleren zu schweren SEE und hohe absolute Konzentrationen der schweren SEE auf. Aufschmelzmodelle eines Spinellperidotits unter Anwendung von üblichen, inkompatiblen Verteilungskoeffizienten (Kd's) können die gemessenen Fraktionierungen von mittleren zu schweren SEE nicht reproduzieren. Die Anwendung der neuen Kd's, die kompatibles Verhalten der schweren SEE im Cpx vorhersagen, ergibt zwar bessere Resultate, kann jedoch nicht die am stärksten fraktionierten Proben erklären. Darüber hinaus werden sehr hohe Aufschmelzgrade benötigt, was nicht mit Hauptelementdaten in Einklang zu bringen ist. Niedrige (~3-5%) Aufschmelzgrade im Stabilitätsfeld von Granatperidotit, gefolgt von weiterer Aufschmelzung von Spinellperidotit kann jedoch die Beobachtungen weitgehend erklären. Aus diesem Grund muss Granat weiterhin als wichtige Phase bei der Genese von MORB betrachtet werden (Kapitel 1).Eine weitere Hürde zum quantitativen Verständnis von Aufschmelzprozessen unter mittelozeanischen Rücken ist die fehlende Korrelation zwischen Haupt- und Spuren-elementen in residuellen abyssalen Peridotiten. Das Cr/(Cr+Al) Verhältnis (Cr#) in Spinell wird im Allgemeinen als guter qualitativer Indikator für den Aufschmelzgrad betrachtet. Die Mineralchemie der CIR Peridotite und publizierte Daten von anderen abyssalen Peridotiten zeigen, dass die schweren SEE sehr gut (r2 ~ 0.9) mit Cr# der koexistierenden Spinelle korreliert. Die Auswertung dieser Korrelation ergibt einen quantitativen Aufschmelz-indikator für Residuen, welcher auf dem Spinellchemismus basiert. Damit kann der Schmelzgrad als Funktion von Cr# in Spinell ausgedrückt werden: F = 0.10×ln(Cr#) + 0.24 (Hellebrand et al., Nature, in review; Kapitel 2). Die Anwendung dieses Indikators auf Mantelproben, für die keine Ionensondendaten verfügbar sind, ermöglicht es, geochemische und geophysikalischen Daten zu verbinden. Aus geodynamischer Perspektive ist der Gakkel Rücken im Arktischen Ozean von großer Bedeutung für das Verständnis von Aufschmelzprozessen, da er weltweit die niedrigste Divergenzrate aufweist und große Transformstörungen fehlen. Publizierte Basaltdaten deuten auf einen extrem niedrigen Aufschmelzgrad hin, was mit globalen Korrelationen im Einklang steht. Stark alterierte Mantelperidotite einer Lokalität entlang des kaum beprobten Gakkel Rückens wurden deshalb auf Primärminerale untersucht. Nur in einer Probe sind oxidierte Spinellpseudomorphosen mit Spuren primärer Spinelle erhalten geblieben. Ihre Cr# ist signifikant höher als die einiger Peridotite von schneller divergierenden Rücken und ihr Schmelzgrad ist damit höher als aufgrund der Basaltzusammensetzungen vermutet. Der unter Anwendung des oben erwähnten Indikators ermittelte Schmelzgrad ermöglicht die Berechnung der Krustenmächtigkeit am Gakkel Rücken. Diese ist wesentlich größer als die aus Schweredaten ermittelte Mächtigkeit, oder die aus der globalen Korrelation zwischen Divergenzrate und mittels Seismik erhaltene Krustendicke. Dieses unerwartete Ergebnis kann möglicherweise auf kompositionelle Heterogenitäten bei niedrigen Schmelzgraden, oder auf eine insgesamt größere Verarmung des Mantels unter dem Gakkel Rücken zurückgeführt werden (Hellebrand et al., Chem.Geol., in review; Kapitel 3).Zusätzliche Informationen zur Modellierung und Analytik sind im Anhang A-C aufgeführt
Analysis of the influence of epitope flanking regions on MHC class I restricted antigen presentation
Resumo:
Peptides presented by MHC class I molecules for CTL recognition are derived mainly from cytosolic proteins. For antigen presentation on the cell surface, epitopes require correct processing by cytosolic and ER proteases, efficient TAP transport and MHC class I binding affinity. The efficiency of epitope generation depends not only on the epitope itself, but also on its flanking regions. In this project, the influence of the C-terminal region of the model epitope SIINFEKL (S8L) from chicken ovalbumin (aa 257-264) on antigen processing has been investigated. S8L is a well characterized epitope presented on the murine MHC class I molecule, H-2Kb. The Flp-In 293Kb cell line was transfected with different constructs each enabling the expression of the S8L sequence with different defined C-terminal flanking regions. The constructs differed at the two first C-terminal positions after the S8L epitope, so called P1’ and P2’. At these sites, all 20 amino acids were exchanged consecutively and tested for their influence on H-2Kb/S8L presentation on the cell surface of the Flp-In 293Kb cells. The detection of this complex was performed by immunostaining and flow cytometry. The prevailing assumption is that proteasomal cleavages are exclusively responsible for the generation of the final C-termini of CTL epitopes. Nevertheless, recent publications showed that TPPII (tripeptidyl peptidase II) is required for the generation of the correct C-terminus of the HLA-A3-restricted HIV epitope Nef(73-82). With this background, the dependence of the S8L generation on proteasomal cleavage of the designed constructs was characterized using proteasomal inhibitors. The results obtained indicate that it is crucial for proteasomal cleavage, which amino acid is flanking the C-terminus of an epitope. Furthermore, partially proteasome independent S8L generation from specific S8L-precursor peptides was observed. Hence, the possibility of other existing endo- or carboxy-peptidases in the cytosol that could be involved in the correct trimming of the C-terminus of antigenic peptides for MHC class I presentation was investigated, performing specific knockdowns and using inhibitors against the target peptidases. In parallel, a purification strategy to identify the novel peptidase was established. The purified peaks showing an endopeptidase activity were further analyzed by mass spectrometry and some potential peptidases (like e.g. Lon) were identified, which have to be further characterized.
Resumo:
Die effiziente Generierung von Peptid-Epitopen aus zelleigenen oder viralen Proteinen für die Präsentation auf „Major Histocompatibility Complex I“ (MHC I) Molekülen ist essentiell für die Aktivierung des adaptiven Immunsystems und die Effektorfunktion der CD8+ zytotoxischen T-Zellen (CTLs). CTLs erkennen diese Peptide in Kontext mit MHC I Molekülen über ihren spezifischen T-Zellrezeptor (TCR). Die Generierung dieser Epitope ist das Resultat eines komplexen proteolytischen Prozesses, der im Zytosol und im endoplasmatischen Retikulum (ER) stattfindet. Im Zytosol generiert das Proteasom N-terminal verlängerte Epitop-Vorläufer. Diese werden durch weitere zytosolische Proteasen abgebaut, es sei denn, sie werden durch den „transporter associated with antigen processing“ (TAP) in das ER transportiert. Dort werden sie durch Aminopeptidasen getrimmt, um den Bindungsvoraussetzungen der MHC I Moleküle zu genügen. Im murinen System ist die „ER aminopeptidase associated with antigen processing“ (ERAAP) die bislang einzige beschriebene Aminopeptidase, die dieses N-terminale Trimming von CTL Epitopen vermitteln kann. Das Profil der proteolytischen Aktivität in angereichertem murinen ER kann jedoch nicht allein durch die Aktivität von ERAAP erklärt werden, was auf die Anwesenheit weiterer Aminopeptidasen mit einer potentiellen Funktion in der Antigenprozessierung hinweist. In dieser Arbeit konnte die immunologisch bislang noch nicht beschriebene Aminopeptidase ERMP1 (endoplasmic reticulum metallopeptidase 1) im murinen ER identifiziert werden. Nach Aufreinigung muriner Mikrosomen und anschließender Anionenaustausch-Chromatographie wurden die gesammelten Fraktionen mit fluorogenen Substraten auf Aminopeptidase-Aktivität getestet. Durch massenspektrometrische Analyse konnten in den beobachteten Peaks die schon beschriebenen Aminopeptidasen ERAAP, die „insulin regulated aminopeptidase“ IRAP und die immunologisch bislang nicht beschriebene Aminopeptidase ERMP1 identifiziert werden. Durch Fluoreszenzmikroskopie konnte die intrazelluläre Lokalisation von ERMP1 im ER durch Kolokalisation mit TAP verifiziert werden. Wie viele Komponenten des MHC I Prozessierungsweges wird auch die Expression von ERMP1 durch IFN-γ stimuliert. Dies macht ERMP1 zu einer potentiellen zweiten trimmenden Aminopeptidase im murinen ER. Überexpression von ERMP1 hat einen allelspezifischen Einfluss auf die globale MHC I Präsentation auf der Zelloberfläche und durch Überexpression und shRNA vermitteltes gene silencing konnte außerdem ein epitopspezifischer Effekt nachgewiesen werden. Da N-terminales Trimming durch ERAAP mit der Evasion von Tumoren und veränderter Immundominanz assoziiert wird, ist die detaillierte Charakterisierung der Aminopeptidase ERMP1 ein wichtiger Schritt zum Verständnis der MHC I Antigen-Prozessierung und der Generierung von CTL Epitopen im ER.