3 resultados para linearly ordered topological space

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis is concerned with certain aspects of differential and pseudodifferential operators on infinite dimensional spaces. We aim to generalize classical operator theoretical concepts of pseudodifferential operators on finite dimensional spaces to the infinite dimensional case. At first we summarize some facts about the canonical Gaussian measures on infinite dimensional Hilbert space riggings. Considering the naturally unitary group actions in $L^2(H_-,gamma)$ given by weighted shifts and multiplication with $e^{iSkp{t}{cdot}_0}$ we obtain an unitary equivalence $F$ between them. In this sense $F$ can be considered as an abstract Fourier transform. We show that $F$ coincides with the Fourier-Wiener transform. Using the Fourier-Wiener transform we define pseudodifferential operators in Weyl- and Kohn-Nirenberg form on our Hilbert space rigging. In the case of this Gaussian measure $gamma$ we discuss several possible Laplacians, at first the Ornstein-Uhlenbeck operator and then pseudo-differential operators with negative definite symbol. In the second case, these operators are generators of $L^2_gamma$-sub-Markovian semi-groups and $L^2_gamma$-Dirichlet-forms. In 1992 Gramsch, Ueberberg and Wagner described a construction of generalized Hörmander classes by commutator methods. Following this concept and the classical finite dimensional description of $Psi_{ro,delta}^0$ ($0leqdeltaleqroleq 1$, $delta< 1$) in the $C^*$-algebra $L(L^2)$ by Beals and Cordes we construct in both cases generalized Hörmander classes, which are $Psi^*$-algebras. These classes act on a scale of Sobolev spaces, generated by our Laplacian. In the case of the Ornstein-Uhlenbeck operator, we prove that a large class of continuous pseudodifferential operators considered by Albeverio and Dalecky in 1998 is contained in our generalized Hörmander class. Furthermore, in the case of a Laplacian with negative definite symbol, we develop a symbolic calculus for our operators. We show some Fredholm-criteria for them and prove that these Fredholm-operators are hypoelliptic. Moreover, in the finite dimensional case, using the Gaussian-measure instead of the Lebesgue-measure the index of these Fredholm operators is still given by Fedosov's formula. Considering an infinite dimensional Heisenberg group rigging we discuss the connection of some representations of the Heisenberg group to pseudo-differential operators on infinite dimensional spaces. We use this connections to calculate the spectrum of pseudodifferential operators and to construct generalized Hörmander classes given by smooth elements which are spectrally invariant in $L^2(H_-,gamma)$. Finally, given a topological space $X$ with Borel measure $mu$, a locally compact group $G$ and a representation $B$ of $G$ in the group of all homeomorphisms of $X$, we construct a Borel measure $mu_s$ on $X$ which is invariant under $B(G)$.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Der ungarische Mathematiker Friedrich Riesz studierte und forschte in den mathematischen Milieus von Budapest, Göttingen und Paris. Die vorliegende Arbeit möchte zeigen, daß die Beiträge von Riesz zur Herausbildung eines abstrakten Raumbegriffs durch eine Verknüpfung von Entwicklungen aus allen drei mathematischen Kulturen ermöglicht wurden, in denen er sich bewegt hat. Die Arbeit konzentriert sich dabei auf den von Riesz 1906 veröffentlichten Text „Die Genesis des Raumbegriffs". Sowohl für seine Fragestellungen als auch für seinen methodischen Zugang fand Riesz vor allem in Frankreich und Göttingen Anregungen: Henri Poincarés Beiträge zur Raumdiskussion, Maurice Fréchets Ansätze einer abstrakten Punktmengenlehre, David Hilberts Charakterisierung der Stetigkeit des geometrischen Raumes. Diese Impulse aufgreifend suchte Riesz ein Konzept zu schaffen, das die Forderungen von Poincaré, Hilbert und Fréchet gleichermaßen erfüllte. So schlug Riesz einen allgemeinen Begriff des mathematischen Kontinuums vor, dem sich Fréchets Konzept der L-Klasse, Hilberts Mannigfaltigkeitsbegriff und Poincarés erfahrungsgemäße Vorstellung der Stetigkeit des ‚wirklichen' Raumes unterordnen ließen. Für die Durchführung seines Projekts wandte Riesz mengentheoretische und axiomatische Methoden an, die er der Analysis in Frankreich und der Geometrie bei Hilbert entnommen hatte. Riesz' aufnahmebereite Haltung spielte dabei eine zentrale Rolle. Diese Haltung kann wiederum als ein Element der ungarischen mathematischen Kultur gedeutet werden, welche sich damals ihrerseits stark an den Entwicklungen in Frankreich und Deutschland orientierte. Darüber hinaus enthält Riesz’ Arbeit Ansätze einer konstruktiven Mengenlehre, die auf René Baire zurückzuführen sind. Aus diesen unerwarteten Ergebnissen ergibt sich die Aufgabe, den Bezug von Riesz’ und Baires Ideen zur späteren intuitionistischen Mengenlehre von L.E.J. Brouwer und Hermann Weyl weiter zu erforschen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the course of this work the effect of metal substitution on the structural and magnetic properties of the double perovskites Sr2MM’O6 (M = Fe, substituted by Cr, Zn and Ga; M’ = Re, substituted by Sb) was explored by means of X-ray diffraction, magnetic measurements, band structure calculations, Mößbauer spectroscopy and conductivity measurements. The focus of this study was the determination of (i) the kind and structural boundary conditions of the magnetic interaction between the M and M’ cations and (ii) the conditions for the principal application of double perovskites as spintronic materials by means of the band model approach. Strong correlations between the electronic, structural and magnetic properties have been found during the study of the double perovskites Sr2Fe1-xMxReO6 (0 < x < 1, M = Zn, Cr). The interplay between van Hove-singularity and Fermi level plays a crucial role for the magnetic properties. Substitution of Fe by Cr in Sr2FeReO6 leads to a non-monotonic behaviour of the saturation magnetization (MS) and an enhancement for substitution levels up to 10 %. The Curie temperatures (TC) monotonically increase from 401 to 616 K. In contrast, Zn substitution leads to a continuous decrease of MS and TC. The diamagnetic dilution of the Fe-sublattice by Zn leads to a transition from an itinerant ferrimagnetic to a localized ferromagnetic material. Thus, Zn substitution inhibits the long-range ferromagnetic interaction within the Fe-sublattice and preserves the long-range ferromagnetic interaction within the Re-sublattice. Superimposed on the electronic effects is the structural influence which can be explained by size effects modelled by the tolerance factor t. In the case of Cr substitution, a tetragonal – cubic transformation for x > 0.4 is observed. For Zn substituted samples the tetragonal distortion linearly increases with increasing Zn content. In order to elucidate the nature of the magnetic interaction between the M and M’ cations, Fe and Re were substituted by the valence invariant main group metals Ga and Sb, respectively. X-ray diffraction reveals Sr2FeRe1-xSbxO6 (0 < x < 0.9) to crystallize without antisite disorder in the tetragonal distorted perovskite structure (space group I4/mmm). The ferrimagnetic behaviour of the parent compound Sr2FeReO6 changes to antiferromagnetic upon Sb substitution as determined by magnetic susceptibility measurements. Samples up to a doping level of 0.3 are ferrimagnetic, while Sb contents higher than 0.6 result in an overall antiferromagnetic behaviour. 57Fe Mößbauer results show a coexistence of ferri- and antiferromagnetic clusters within the same perovskite-type crystal structure in the Sb substitution range 0.3 < x < 0.8, whereas Sr2FeReO6 and Sr2FeRe0.9Sb0.1O6 are “purely” ferrimagnetic and Sr2FeRe0.1Sb0.9O6 contains antiferromagnetically ordered Fe sites only. Consequently, a replacement of the Re atoms by a nonmagnetic main group element such as Sb blocks the double exchange pathways Fe–O–Re(Sb)–O–Fe along the crystallographic axis of the perovskite unit cell and destroys the itinerant magnetism of the parent compound. The structural and magnetic characterization of Sr2Fe1-xGaxReO6 (0 < x < 0.7) exhibit a Ga/Re antisite disorder which is unexpected because the parent compound Sr2FeReO6 shows no Fe/Re antisite disorder. This antisite disorder strongly depends on the Ga content of the sample. Although the X-ray data do not hint at a phase separation, sample inhomogeneities caused by a demixing are observed by a combination of magnetic characterization and Mößbauer spectroscopy. The 57Fe Mößbauer data suggest the formation of two types of clusters, ferrimagnetic Fe- and paramagnetic Ga-based ones. Below 20 % Ga content, Ga statistically dilutes the Fe–O–Re–O–Fe double exchange pathways. Cluster formation begins at x = 0.2, for 0.2 < x < 0.4 the paramagnetic Ga-based clusters do not contain any Fe. Fe containing Ga-based clusters which can be detected by Mößbauer spectroscopy firstly appear for x = 0.4.