2 resultados para in vitro tests

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Da maligne Neoplasien durch Mutationen in Proto-Onko- und/oder Tumorsuppressorgenen ausgelöst werden, stellt die DNA eines der wichtigsten Targets für die Entwicklung neuer Zytostatika dar. Auch bei den im Arbeitskreis Pindur designten und synthetisier-ten Verbindungen der Nukleobasen-gekoppelten Pyrrolcarboxamid-, der Hetaren[a]carbazol- und der Combilexin-Reihe handelt es sich um DNA-Liganden mit potentiell antitumoraktiven Eigenschaf-ten. Die einen dualen Bindemodus aufweisenden Combilexine bestehen aus einem Interkalator (u. a. Naphthalimid, Acridon), der über einen Linker variabler Kettenlänge mit einer rinnenbin-denden, von Netropsin abgeleiteten Bispyrrol-, oder einer bioisosteren Imidazol-, Thiazol- oder Thiophen-pyrrolcarboxamid-struktur verknüpft ist. Das N-terminale Ende der Combilexine wird von einer N,N-Dimethylaminopropyl- oder -ethyl-Seitenkette gebildet. Die DNA-Affinitäten der Liganden wurden mittels Tm-Wert-Messung-en bestimmt. Diese Denaturierungsexperimente wurden sowohl mit poly(dAdT)2- als auch mit Thymus-DNA (~42% GC-Anteil) durchge-führt, um Aussagen zur Stärke und zur Sequenzselektivität der DNA-Bindung machen zu können. Des Weiteren wurden die Bindekon-stanten einiger ausgewählter Vertreter mit Hilfe des Ethidium-bromid-Verdrängungsassays ermittelt; einige Testverbindungen wurden zudem auf potentiell vorhandene, TOPO I-inhibierende Eigenschaften untersucht. Diese biochemischen und biophysika-lischen Tests wurden durch Molecular Modelling-Studien ergänzt, die die Berechnung von molekularen Eigenschaften, die Durch-führung von Konformerenanalysen und die Simulation von DNA-Ligand-Komplexen (Docking) umfassten. Durch Korrelation der in vitro-Befunde mit den in silico-Daten gelang es, vor allem für die Substanzklasse der Combilexine einige richtungweisende Struktur-Wirkungsbeziehungen aufzustellen. So konnte gezeigt werden, dass die Einführung eines Imidazol-Rings in die rinnen-bindende Hetaren-pyrrolcarboxamid-Struktur der Combilexine aufgrund der H-Brücken-Akzeptor-Funktion des sp2-hybridisierten N-Atoms eine Verschiebung der Sequenzselektivität der DNA-Bindung von AT- zu GC-reichen Arealen der DNA bedingt. Zudem erwies sich ein C3-Linker für die Verknüpfung des Naphthalimids mit dem rinnenbindenden Strukturelement als am besten geeignet, während bei den Acridon-Derivaten die Verbindungen mit einem N-terminalen Buttersäure-Linker die höchste DNA-Affinität aufwiesen. Dies ist sehr wahrscheinlich auf die im Vergleich zum Naphthalimid-Molekül geringere y-Achsen-Ausdehnung (bzgl. eines x/y-Koordinatensystems) des Acridons zurückzuführen. Die ermittelten Struktur-Wirkungsbeziehungen können dazu herangezogen werden, das rationale Design neuer DNA-Liganden mit potentiell stärkerer DNA-Bindung zu optimieren.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zur Registrierung von Pharmazeutika ist eine umfassende Analyse ihres genotoxischen Potentials von Nöten. Aufgrund der Vielzahl genotoxischer Mechanismen und deren resultierenden Schäden wird ein gestaffeltes Testdesign durch die ICH-Richtlinie S2(R1) „Guidance on genotoxicity testing and data interpretation for pharmaceuticals intended for human use S2(R1)“ definiert, um alle genotoxischen Substanzen zu identifizieren. Die Standardtestbatterie ist in der frühen Phase der Arzneimittelentwicklung aufgrund des geringen Durchsatzes und des Mangels an verfügbarer Substanzmenge vermindert anwendbar. Darüber hinaus verfügen in vitro Genotoxizitätstests in Säugerzellen über eine relativ geringe Spezifität. Für eine vollständige Sicherheitsbeurteilung wird eine in vivo Testung auf Kanzerogenität benötigt. Allerdings sind diese Testsysteme kosten- und zeitintensiv. Aufgrund dessen zielen neue Forschungsansätze auf die Verbesserung der Prädiktivität und die Erfassung des genotoxischen Potentials bereits in der frühen Phase der Arzneimittelentwicklung ab. Die high content imaging (HCI)-Technologie offeriert einen Ansatz zur Verbesserung des Durchsatzes verglichen mit der Standardtestbatterie. Zusätzlich hat ein Zell-basiertes Modell den Vorteil Daten relativ schnell bei gleichzeitig geringem Bedarf an Substanzmenge zu generieren. Demzufolge ermöglichen HCI-basierte Testsysteme eine Prüfung in der frühen Phase der pharmazeutischen Arzneimittelentwicklung. Das Ziel dieser Studie ist die Entwicklung eines neuen, spezifischen und sensitiven HCI-basierten Testsytems für Genotoxine und Progenotoxine in vitro unter Verwendung von HepG2-Zellen gewesen. Aufgrund ihrer begrenzten metabolischen Kapazität wurde ein kombiniertes System bestehend aus HepG2-Zellen und einem metabolischen Aktivierungssystem zur Testung progenotoxischer Substanzen etabliert. Basierend auf einer vorherigen Genomexpressionsprofilierung (Boehme et al., 2011) und einer Literaturrecherche wurden die folgenden neun unterschiedlichen Proteine der DNA-Schadensantwort als putative Marker der Substanz-induzierten Genotoxizität ausgewählt: p-p53 (Ser15), p21, p-H2AX (Ser139), p-Chk1 (Ser345) p-ATM (Ser1981), p-ATR (Ser428), p-CDC2 (Thr14/Tyr15), GADD45A und p-Chk2 (Thr68). Die Expression bzw. Aktivierung dieser Proteine wurde 48 h nach Behandlung mit den (pro-) genotoxischen Substanzen (Cyclophosphamid, 7,12-Dimethylbenz[a]anthracen, Aflatoxin B1, 2-Acetylaminofluoren, Methylmethansulfonat, Actinomycin D, Etoposid) und den nicht-genotoxischen Substanzen (D-Mannitol, Phenforminhydrochlorid, Progesteron) unter Verwendung der HCI-Technologie ermittelt. Die beste Klassifizierung wurde bei Verwendung der folgenden fünf der ursprünglichen neun putativen Markerproteine erreicht: p-p53 (Ser15), p21, p-H2AX (Ser139), p-Chk1 (Ser345) und p-ATM (Ser1981). In einem zweiten Teil dieser Arbeit wurden die fünf ausgewählten Proteine mit Substanzen, welche von dem European Centre for the Validation of Alternative Methods (ECVAM) zur Beurteilung der Leistung neuer oder modifizierter in vitro Genotoxizitätstests empfohlen sind, getestet. Dieses neue Testsystem erzielte eine Sensitivität von 80 % und eine Spezifität von 86 %, was in einer Prädiktivität von 84 % resultierte. Der synergetische Effekt dieser fünf Proteine ermöglicht die Identifizierung von genotoxischen Substanzen, welche DNA-Schädigungen durch eine Vielzahl von unterschiedlichen Mechanismen induzieren, mit einem hohen Erfolg. Zusammenfassend konnte ein hochprädiktives Prüfungssystem mit metabolischer Aktivierung für ein breites Spektrum potenziell genotoxischer Substanzen generiert werden, welches sich aufgrund des hohen Durchsatzes, des geringen Zeitaufwandes und der geringen Menge benötigter Substanz zur Substanzpriorisierung und -selektion in der Phase der Leitstrukturoptimierung eignet und darüber hinaus mechanistische Hinweise auf die genotoxische Wirkung der Testsubstanz liefert.