12 resultados para hybrid composite material

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the field of organic optoelectronics, the nanoscale structure of the materials has huge im-pact on the device performance. Here, scanning force microscopy (SFM) techniques become increasingly important. In addition to topographic information, various surface properties can be recorded on a nanometer length scale, such as electrical conductivity (conductive scanning force microscopy, C-SFM) and surface potential (Kelvin probe force microscopy, KPFM).rnrnIn the context of this work, the electrical SFM modes were applied to study the interplay be-tween morphology and electrical properties in hybrid optoelectronic structures, developed in the group of Prof. J. Gutmann (MPI-P Mainz). In particular, I investigated the working prin-ciple of a novel integrated electron blocking layer system. A structure of electrically conduct-ing pathways along crystalline TiO2 particles in an insulating matrix of a polymer derived ceramic was found and insulating defect structures could be identified. In order to get insights into the internal structure of a device I investigated a working hybrid solar cell by preparing a cross cut with focused ion beam polishing. With C-SFM, the functional layers could be identified and the charge transport properties of the novel active layer composite material could be studied. rnrnIn C-SFM, soft surfaces can be permanently damaged by (i) tip induced forces, (ii) high elec-tric fields and (iii) high current densities close to the SFM-tip. Thus, an alternative operation based on torsion mode topography imaging in combination with current mapping was intro-duced. In torsion mode, the SFM-tip vibrates laterally and in close proximity to the sample surface. Thus, an electrical contact between tip and sample can be established. In a series of reference experiments on standard surfaces, the working mechanism of scanning conductive torsion mode microscopy (SCTMM) was investigated. Moreover, I studied samples covered with free standing semiconducting polymer nano-pillars that were developed in the group of Dr. P. Theato (University Mainz). The application of SCTMM allowed non-destructive imag-ing of the flexible surface at high resolution while measuring the conductance on individual pillarsrnrnIn order to study light induced electrical effects on the level of single nanostructures, a new SFM setup was built. It is equipped with a laser sample illumination and placed in inert at-mosphere. With this photoelectric SFM, I investigated the light induced response in function-alized nanorods that were developed in the group of Prof. R. Zentel (University Mainz). A block-copolymer containing an anchor block and dye moiety and a semiconducting conju-gated polymer moiety was synthesized and covalently bound to ZnO nanorods. This system forms an electron donor/acceptor interface and can thus be seen as a model system of a solar cell on the nanoscale. With a KPFM study on the illuminated samples, the light induced charge separation between the nanorod and the polymeric corona could not only be visualized, but also quantified.rnrnThe results demonstrate that electrical scanning force microscopy can study fundamental processes in nanostructures and give invaluable feedback to the synthetic chemists for the optimization of functional nanomaterials.rn

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In der vorliegenden Arbeit werden verschiedene Methoden der Synthese von Zinn(IV)oxid Nanopartikeln, deren Stabilisierung durch unterschiedliche Surfactants und der Einbau der Nanomaterialien in PMMA beschrieben und die erhaltenen Materialien charakterisiert. Die Darstellung der Zinnoxid Nanopartikel wurde über drei verschiedene Synthesewege durchgeführt: a) Polymeric Precursor Methode, b) Solvothermal-Synthese und c) säurekatalysierte Fällungsreaktion. Im Rahmen von a) konnte neben der thermodynamisch stabilen Phase von Zinn(IV)oxid ebenfalls die metastabile orthorhombische Phase synthetisiert werden. Durch eine Analyse der Pyrolysebedingungen konnte der Kristallisationsmechanismus des Zinnoxids ausgehend vom Precursor bis zur tetragonalen Phase des Zinn(IV)oxid diskutiert werden. Die Synthesemethoden b) und c) boten sich zur Darstellung von oberflächenmodifizierten Zinnoxid Nanopartikeln an. Als Surfactant benutzte man unter anderem Alkylphosphonsäuren, da eine hydrophobe Oberfläche die Dispersion in MMA ermöglichte. Abschließend wurde eine radikalische in situ-Polymerisation von MMA in Gegenwart von oberflächenmodifizierten Partikeln durchgeführt. Der erhaltene Verbundwerkstoff zeichnete sich durch eine erhöhte thermische Stabilität aufgrund weniger Strukturdefekte des Polymers aus. Durch eine Untersuchung des Polymerisationsmechanismus konnte die Wirkung der oberflächenmodifizierten Nanopartikel auf die Polymerisation veranschaulicht werden. Aufgrund der nicht homogenen Verteilung der Nanopartikel im Verbundwerkstoff konnte jedoch keine Charakterisierung der optischen Eigenschaften durchgeführt werden.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In dieser Arbeit wurden polymere Kompositmaterialien mit Hilfe von Festkörper-NMR-Techniken untersucht, um den Einfluß von Polymer-Festkörper-Kontakten auf molekulare Materialeigenschaften zu betrachten. Dabei wurden sowohl Analysen am Polymer als auch am Füllmaterial durchgeführt.rnrnIm ersten Teil der Arbeit wurde die Dynamik von Poly(ethylmethacrylat) (PEMA) in sphärischen Bürstenpartikeln gemessen. Diese Bürsten bestanden aus einem Poly(silsesquioxan)-Kern und verpfropften PEMA-Ketten, die über ATRP (atom transfer radical polymerization) an verschiedenen Kettensequenzen mit 13C an der Carboxylgruppe markiert wurden. Statische 13C-NMR-Messungen konnten zeigen, dass die Dynamik dieser Sequenzen unabhängig vom Abstand zur Oberfläche verlangsamt ist, was auf eine eingeschränkte Reptation zurückgeführt wurde.rnrnDer zweite Teil der Arbeit beschäftigt sich mit den molekularen Unterschieden von Silika-Naturkautschuk-Kompositen, die über mechanisches Mischen bzw. über eine Sol-Gel-Reaktion hergestellt wurden. Durch kinetische 1H-NMR-Messungen wurde der Umsatz der Sol-Gel-Reaktion bestimmt. Mittels heteronuklearen 29Si{1H}-NMR-Korrelationsexperimenten wurde ein direkter räumlicher Kontakt zwischen dem Inneren der Partikel und dem Polymer nachgewiesen. Dies belegt experimentell, dass im Kompositmaterial die Polymerketten in den durch Sol-Gel-Reaktion hergestellten Silikapartikeln eingeschlossen sind.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Das Silicatein α ist ein 24 kDa großes Enzym, welches im Schwamm Suberites domuncula für die Synthese von Biosilikat verantwortlich ist. Vorhergehende Studien haben gezeigt, dass Silicatein auch die Synthese anderer Metalloxide wie Titandioxid, Galliumoxid und Zirkoniumdioxid katalysieren kann. Diese Fähigkeiten machen das Silicatein α für biomedizinische und biotechnologische Anwendungen interessant, da die Synthese unter nahezu physiologischen Bedingungen ablaufen kann, was die Herstellung neuartiger Kompositmaterialien mit einzigartigen Eigenschaften erleichtern würde. Zur Immobilisierung des Silicatein α auf verschiedenen Oberflächen wurde bislang ein Nickel-NTA-Kopolymer eingesetzt. Diese Art der Immobilisierung bietet eine Reihe von Möglichkeiten in der Nanobiotechnologie, stößt aber in der Biomedizin an ihre Grenzen, da sich nicht alle Oberflächen für ein solches Coating eignen. Zudem können die zur Aktivierung des Polymers nötigen Lösungsmittel und die über die Zeit freigesetzten Monomere aus dem Polymergerüst toxische oder mutagene Wirkung auf das umliegende Gewebe haben. Deshalb wurde das Silicatein α in dieser Arbeit mit zwei Affinitäts-Tags so modifiziert, dass es an verschiedene Oberflächen immobilisiert werden kann und dabei seine Aktivität beibehält. Zuerst wurde das Silicatein mit einem Glu-tag am N-terminalen Ende modifiziert. Dadurch gelang die direkte Immobilisierung an Hydroxyapatit und die folgende, enzymkatalysierte Synthese von Biosilikat-Beschichtungen auf diesem Träger. Die Eigenschaften eines solchen HA-Kompositmaterials können zum Beispiel zu einem verbesserten, schnelleren und stabileren Einwachsen von Knochenimplantaten führen, da Biosilikat die Reifung und Differenzierung von Osteoblasten beschleunigt. rnMit dem an Hydroxyapatit-Plättchen immobilisierten Glu-tag-Silicatein wurde ein modifizierter Pull-down Assay etabliert, wodurch bekannte, aber auch bis dahin noch unbekannte Protein-Interaktionspartner identifiziert werden konnten. rnUm zu zeigen, dass der entwickelte Glu-tag an präformierte, calciumhaltige Oberflächen binden kann, wurden die Nadeln des Kalkschwammes Paraleucilla magna als Modellorganismus verwendet. Die Nadeln konnten durch das immobilisierte Silicatein mit einer Titandioxid-Schicht überzogen werden und unter Verwendung des Interaktionspartners Silintaphin-1 konnte diese Beschichtung noch verstärkt werden. Solche CaCO3-Kompositmaterialien könnten sowohl in der Biomedizin als auch in der Biotechnologie zum Einsatz kommen. Neben den erwähnten calciumhaltigen Materialien finden auch andere Stoffe wie TiO2-Nanodrähte Verwendung in der Forschung. In weiterführenden Experimenten konnte gezeigt werden, dass der entwickelte Glu-tag auch Affinität zu Titandioxid-Oberflächen vermittelt. Auch hier konnte durch das oberflächenimmobilisierte Enzym eine Biosilikatbeschichtung synthetisiert werden. rnMit der zweiten Modifikation - einem Cys-tag - konnte Silicatein direkt auf Goldoberflächen immobilisiert werden. Durch die Verwendung eines Polydimethylsiloxan (PDMS)-Stempels wurde das Cys-getaggte Silicatein in einem linienförmigen Muster auf das Gold übertragen und die Synthese von Titandioxid dort nachgewiesen.rnDie Experimente und Ergebnisse dieser Arbeit haben gezeigt, dass Silicatein α durch einfache Modifikationen an verschiedene Oberflächen immobilisiert werden kann und dabei immer noch seine Aktivität behält. rnHierdurch ergibt sich die Möglichkeit, unter Normalbedingungen verschiedenste Kompositmaterialien herzustellen.rn

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Phononische Kristalle sind strukturierte Materialien mit sich periodisch ändernden elastischen Moduln auf der Wellenlängenskala. Die Interaktion zwischen Schallwellen und periodischer Struktur erzeugt interessante Interferenzphänomene, und phononische Kristalle erschließen neue Funktionalitäten, die in unstrukturierter Materie unzugänglich sind. Hypersonische phononische Kristalle im Speziellen, die bei GHz Frequenzen arbeiten, haben Periodizitäten in der Größenordnung der Wellenlänge sichtbaren Lichts und zeigen daher die Wege auf, gleichzeitig Licht- und Schallausbreitung und -lokalisation zu kontrollieren, und dadurch die Realisierung neuartiger akusto-optischer Anordnungen. Bisher bekannte hypersonische phononische Kristalle basieren auf thermoplastischen Polymeren oder Epoxiden und haben nur eingeschränkte thermische und mechanische Stabilität und mechanischen Kontrast. Phononische Kristalle, die aus mit Flüssigkeit gefüllten zylindrischen Kanälen in harter Matrix bestehen, zeigen einen sehr hohen elastischen Kontrast und sind bislang noch unerforscht. In dieser Dissertation wird die experimentelle Untersuchung zweidimensionaler hypersonischer phononischer Kristalle mit hexagonaler Anordnung zylindrischer Nanoporen basierend auf der Selbstorganisation anodischen Aluminiumoxids (AAO) beschrieben. Dazu wird die Technik der hochauflösenden inelastischen Brillouin Lichtstreuung (BLS) verwendet. AAO ist ein vielsetiges Modellsystem für die Untersuchung reicher phononischer Phänomene im GHz-Bereich, die eng mit den sich in den Nanoporen befindlichen Flüssigkeiten und deren Interaktion mit der Porenwand verknüpft sind. Gerichteter Fluss elastischer Energie parallel und orthogonal zu der Kanalachse, Lokalisierung von Phononen und Beeinflussung der phononischen Bandstruktur bei gleichzeitig präziser Kontrolle des Volumenbruchs der Kanäle (Porosität) werden erörtert. Außerdem ermöglicht die thermische Stabilität von AAO ein temperaturabhängiges Schalten phononischer Eigenschaften infolge temperaturinduzierter Phasenübergänge in den Nanoporen. In monokristallinen zweidimensionalen phononischen AAO Kristallen unterscheiden sich die Dispersionsrelationen empfindlich entlang zweier hoch symmetrischer Richtungen in der Brillouinzone, abhängig davon, ob die Poren leer oder gefüllt sind. Alle experimentellen Dispersionsrelationen werden unter Zuhilfenahme theoretische Ergebnisse durch finite Elemente Analyse (FDTD) gedeutet. Die Zuordnung der Verschiebungsfelder der elastischen Wellen erklärt die Natur aller phononischen Moden.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new class of inorganic-organic hybrid polymers could successfully been prepared by the combination of different polymerization techniques. The access to a broad range of organic polymers incorporated into the hybrid polymer was realized using two independent approaches.rnIn the first approach a functional poly(silsesquioxane) (PSSQ) network was pre-formed, which was capable to initiate a controlled radical polymerization to graft organic vinyl-type monomers from the PSSQ precursor. As controlled radical polymerization techniques atom transfer radical polymerization (ATRP), as well as reversible addition fragmentation chain transfer (RAFT) polymerization could be used after defined tuning of the PSSQ precursor either toward a PSSQ macro-initiator or to a PSSQ macro-chain-transfer-agent. The polymerization pathway, consisting of polycondensation of trialkoxy-silanes followed by grafting-from polymerization of different monomers, allowed synthesis of various functional hybrid polymers. A controlled synthesis of the PSSQ precursors could successfully be performed using a microreactor setup; the molecular weight could be adjusted easily while the polydispersity index could be decreased well below 2.rnThe second approach aimed to incorporate differently derived organic polymers. As examples, polycarbonate and poly(ethylene glycol) were end-group-modified using trialkoxysilanes. After end-group-functionalization these organic polymers could be incorporated into a PSSQ network.rnThese different hybrid polymers showed extraordinary coating abilities. All polymers could be processed from solution by spin-coating or dip-coating. The high amount of reactive silanol moieties in the PSSQ part could be cross-linked after application by annealing at 130° for 1h. Not only cross-linking of the whole film was achieved, which resulted in mechanical interlocking with the substrate, also chemical bonds to metal or metal oxide surfaces were formed. All coating materials showed high stability and adhesion onto various underlying materials, reaching from metals (like steel or gold) and metal oxides (like glass) to plastics (like polycarbonate or polytetrafluoroethylene).rnAs the material and the synthetic pathway were very tolerant toward different functionalities, various functional monomers could be incorporated in the final coating material. The incorporation of N-isopropylacrylamide yielded in temperature-responsive surface coatings, whereas the incorporation of redox-active monomers allowed the preparation of semi-conductive coatings, capable to produce smooth hole-injection layers on transparent conductive electrodes used in optoelectronic devices.rnThe range of possible applications could be increased tremendously by incorporation of reactive monomers, capable to undergo fast and quantitative conversions by polymer-analogous reactions. For example, grafting active esters from a PSSQ precursor yielded a reactive surface coating after application onto numerous substrates. Just by dipping the coated substrate into a solution of a functionalized amine, the desired function could be immobilized at the interface as well as throughout the whole film. The obtained reactive surface coatings could be used as basis for different functional coatings for various applications. The conversion with specifically tuned amines yielded in surfaces with adjustable wetting behaviors, switchable wetting behaviors or as recognition element for surface-oriented bio-analytical devices. The combination of hybrid materials with orthogonal reactivities allowed for the first time the preparation of multi-reactive surfaces which could be functionalized sequentially with defined fractions of different groups at the interface. rnThe introduced concept to synthesis functional hybrid polymers unifies the main requirements on an ideal coating material. Strong adhesion on a wide range of underlying materials was achieved by secondary condensation of the PSSQ part, whereas the organic part allowed incorporation of various functionalities. Thus, a flexible platform to create functional and reactive surface coatings was achieved, which could be applied to different substrates. rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In dieser Arbeit werden zwei Arten von nicht-kovalent verknüpften Netzwerkstrukturen vorgestellt, die aus phosphonsäurehaltigen Molekülen aufgebaut sind. Einerseits sollen diese phosphonsäurehaltigen Moleküle als Protonenleiter in Brennstoffzellen eingesetzt werden. Dies ist durch die Möglichkeit des kooperativen Protonentransports in wasserstoffbrückenhaltigen Netzwerken begründet. Auf der anderen Seite sollen die phosphonsäurehaltigen Moleküle unter Einsatz von Metallkationen zur Darstellung ionischer Netzwerke verwendet werden. In diesem Fall fungieren die phosphonierten Moleküle als Linker in porösen organisch-anorganischen Hybridmaterialien, die sich beispielsweise zur Gasspeicherung eignen.rnEine Brennstoffzelle stellt Energie mit hoher Effizienz und geringer Umweltbelastung bereit. Das Herzstück der Brennstoffzelle ist die Elektrolytmembran, die auch als Separator oder Protonenaustauschmembran (PEM) bezeichnet wird. Es wird davon ausgegangen, daß der Schlüssel zur Weiterentwicklung der PEM-Brennstoffzellen in der Entwicklung von Elektrolyten liegt, die ausschließlich und effizient Protonen transportieren und darüber hinaus chemisch (oxidationsbeständig) und mechanisch stabil sind. Die mechanische Stabilität betrifft insbesondere den Betrieb der Brennstoffzelle bei hohen Temperaturen und niedriger relativer Feuchtigkeit. In dieser Arbeit wird ein neuartiger Ansatz zum Erreichen eines hohen Protonentransports im Festkörper vorgestellt, der auf dem Einsatz kleiner Moleküle beruht, die durch Selbstorganisation eine kontinuierliche protonenleitende Phase erzeugen. Bis jetzt stellt Hexakis(p-phosphonatophenyl)benzol das erste Beispiel eines kristallinen Protonenleiters dar, der im festen Zustand eine hohe und konstante Leistung zeigt. Die Modifizierung von Hexakis(p-phosphonatophenyl)benzol, entweder durch Änderung von para- zu meta-Substitution oder die Einführung von Alkylketten, führt zu Verbindungen geringerer Kristallinität und niedriger Protonenleitfähigkeit.rnIm zweiten Teil der Arbeit wurde 1,3,5-Tris(p-phosphonatophenyl)benzol als Linker in der Synthese von offenen Phosphonat-Netzwerken eingesetzt. Es bilden sich aufgrund der ionischen Wechselwirkung zwischen den positiv geladenen Metallkationen und den negativ geladenen Phosphonsäuregruppen hochstabile Feststoffe. Eines der wichtigsten Ergebnisse dieser Arbeit besteht darin, daß 1,3,5-Tris(p-phosphonatophenyl)benzol als Linker zum Aufbau poröser Hybridmaterialien eingesetzt werden kann. Zum ersten Mal wurde ein dreifach phosphoniertes organisches Molekül zum Aufbau mikroporöser offener Phosphonat-Netzwerke verwendet. Zudem konnte gezeigt werden, daß die Porosität mit dem Wachstumsmechanismus dieser Materialien zusammenhängt. Es ist nur dann möglich ein gleichfalls mikroporöses und kristallines ionisches Netzwerk auf der Grundlage phosphonierter Moleküle zu erhalten, wenn Linker und Konnektor die gleiche Geometrie und Funktionalität besitzen.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A unique characteristic of soft matter is its ability to self-assemble into larger structures. Characterizing these structures is crucial for their applications. In the first part of this work, I investigated DNA-organic hybrid material by means of Fluorescence Correlation Spectroscopy (FCS) and Fluorescence Cross-Correlation Spectroscopy (FCCS). DNA-organic hybrid materials, a novel class of hybrid materials composed of synthetic macromolecules and oligodeoxynucleotide segmenta, are mostly amphiphilic and can self-assemble into supramolecular structures in aqueous solution. A hybrid material of a fluorophore, perylenediimide (PDI), and a DNA segment (DNA-PDI) has been developed in Prof. A. Hermann’s group (University of Groningen). This novel material has the ability to form aggregates through pi-pi stacking between planar PDIs and can be traced in solution due to the fluorescence of PDI. I have determined the diffusion coefficient of DNA-PDI conjugates in aqueous solution by means of FCS. In addition, I investigated whether such DNA-PDIs form aggregates with certain structure, for instance dimers. rnOnce the DNA hybrid material self-assemble into supermolecular structures for instance into micelles, the single molecules do not necessarily stay in one specific micelle. Actually, a single molecule may enter and leave micelles constantly. The average residence time of a single molecule in a certain micelle depends on the nature of the molecule. I have chosen DNA-b-polypropylene oxide (PPO) as model molecules and investigated the residence time of DNA-b-PPO molecules in their according micelles by means of FCCS.rnBesides the DNA hybrid materials, polymeric colloids can also form ordered structures once they are brought to an air/water interface. Here, hexagonally densely packed monolayers can be generated. These monolayers can be deposited onto different surfaces as coating layers. In the second part of this work, I investigated the mechanical properties of such colloidal monolayers using micromechanical cantilevers. When a coating layer is deposited on a cantilever, it can modify the elasticity of the cantilever. This variation can be reflected either by a deflection or by a resonance frequency shift of the cantilever. In turn, detecting these changes provides information about the mechanical properties of the coating layer. rnIn the second part of this work, polymeric colloidal monolayers were coated on a cantilever and homogenous polymer films of a few hundred nanometers in thickness were generated from these colloidal monolayers by thermal annealing or organic vapor annealing. Both the film formation process and the mechanical properties of these resulting homogenous films were investigated by means of cantilever. rnElastic property changes of the coating film, for example upon absorption of organic vapors, induce a deflection of the cantilever. This effect enables a cantilever to detect target molecules, when the cantilever is coated with an active layer with specific affinity to target molecules. In the last part of this thesis, I investigated the applicability of suitably functionalized micromechanical cantilevers as sensors. In particular, glucose sensitive polymer brushes were grafted on a cantilever and the deflection of this cantilever was measured during exposure to glucose solution. rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mixing of nanoparticles with polymers to form composite materials has been applied for decades. They combine the advantages of polymers (e.g., elasticity, transparency, or dielectric properties) and inorganic nanoparticles (e.g., specific absorption of light, magneto resistance effects, chemical activity, and catalysis etc.). Nanocomposites exhibit several new characters that single-phase materials do not have. Filling the polymeric matrix with an inorganic material requires its homogeneous distribution in order to achieve the highest possible synergetic effect. To fulfill this requirement, the incompatibility between the filler and the matrix, originating from their opposite polarity, has to be resolved. A very important parameter here is the strength and irreversibility of the adsorption of the surface active compound on the inorganic material. In this work the Isothermal titration calorimetry (ITC) was applied as a method to quantify and investigate the adsorption process and binding efficiencies in organic-inorganic–hybrid-systems by determining the thermodynamic parameters (ΔH, ΔS, ΔG, KB as well as the stoichiometry n). These values provide quantification and detailed understanding of the adsorption process of surface active molecules onto inorganic particles. In this way, a direct correlation between the adsorption strength and structure of the surface active compounds can be achieved. Above all, knowledge of the adsorption mechanism in combination with the structure should facilitate a more rational design into the mainly empirically based production and optimization of nanocomposites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In dye-sensitized solar cells a blocking layer between the transparent electrode and the mesoporous titanium dioxide film is used to prevent short-circuits between the hole-conductor and the front electrode. The conventional approach is to use a compact layer of titanium dioxide prepared by spin coating or spray pyrolysis. The thickness of the blocking layer is critical. On one hand, the layer has to be thick enough to cover the rough substrate completely. On the other hand, the serial resistance increases with increasing film thickness, because the layer acts as an ohmic resistance itself. In this thesis an amphiphilic diblock copolymer is used as a functional template to produce an alternative, hybrid blocking layer. The hybrid blocking layer is thinner than the conventional, compact titanium dioxide film and thereby possesses a higher conductivity. Still, this type of blocking layer covers the rough electrode material completely and avoids current loss through charge recombination. The novel blocking layer is prepared using a tailored, amphiphilic block copolymer in combination with sol-gel chemistry. While the hydrophilic poly(ethylene oxide) part of the polymer coordinates a titanium dioxide precursor to form a percolating network of titania particles, the hydrophobic poly(dimethylsiloxane) part turns into an insulating ceramic layer. With this technique, crack-free films with a thickness down to 24 nm are obtained. The presence of a conductive titanium dioxide network for current flow, which is embedded in an insulating ceramic material, is validated by conductive scanning force microscopy. This is the first time that such a hybrid blocking layer is implemented in a solar cell. With this approach the efficiency could be increased up to 27 % compared to the conventional blocking layer. Thus, it is demonstrated that the hybrid blocking layer represents a competitive alternative to the classical approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wurden Miniemulsionen als räumliche Begrenzungen für die Synthese von unterschiedlichen funktionellen Materialien mit neuartigen Eigenschaften verwendet. Das erste Themengebiet umfasst die Herstellung von Polymer/Calciumphosphat-Hybridpartikeln und –Hybridkapseln über die templatgesteuerte Mineralisation von Calciumphosphat. Die funktionalisierte Oberfläche von Polymernanopartikeln, welche über die Miniemulsionspolymerisation hergestellt wurden, diente als Templat für die Kristallisation von Calciumphosphat auf den Partikeln. Der Einfluss der funktionellen Carboxylat- und Phosphonat-Oberflächengruppen auf die Komplexierung von Calcium-Ionen sowie die Mineralisation von Calciumphosphat auf der Oberfläche der Nanopartikel wurde mit mehreren Methoden (ionenselektive Elektroden, REM, TEM und XRD) detailliert analysiert. Es wurde herausgefunden, dass die Mineralisation bei verschiedenen pH-Werten zu vollkommen unterschiedlichen Kristallmorphologien (nadel- und plättchenförmige Kristalle) auf der Oberfläche der Partikel führt. Untersuchungen der Mineralisationskinetik zeigten, dass die Morphologie der Hydroxylapatit-Kristalle auf der Partikeloberfläche mit der Änderung der Kristallisationsgeschwindigkeit durch eine sorgfältige Wahl des pH-Wertes gezielt kontrolliert werden kann. Sowohl die Eigenschaften der als Templat verwendeten Polymernanopartikel (z. B. Größe, Form und Funktionalisierung), als auch die Oberflächentopografie der entstandenen Polymer/Calciumphosphat-Hybridpartikel wurden gezielt verändert, um die Eigenschaften der erhaltenen Kompositmaterialien zu steuern. rnEine ähnliche bio-inspirierte Methode wurde zur in situ-Herstellung von organisch/anorganischen Nanokapseln entwickelt. Hierbei wurde die flexible Grenzfläche von flüssigen Miniemulsionströpfchen zur Mineralisation von Calciumphosphat an der Grenzfläche eingesetzt, um Gelatine/Calciumphosphat-Hybridkapseln mit flüssigem Kern herzustellen. Der flüssige Kern der Nanokapseln ermöglicht dabei die Verkapselung unterschiedlicher hydrophiler Substanzen, was in dieser Arbeit durch die erfolgreiche Verkapselung sehr kleiner Hydroxylapatit-Kristalle sowie eines Fluoreszenzfarbstoffes (Rhodamin 6G) demonstriert wurde. Aufgrund der intrinsischen Eigenschaften der Gelatine/Calciumphosphat-Kapseln konnten abhängig vom pH-Wert der Umgebung unterschiedliche Mengen des verkapselten Fluoreszenzfarbstoffes aus den Kapseln freigesetzt werden. Eine mögliche Anwendung der Polymer/Calciumphosphat-Partikel und –Kapseln ist die Implantatbeschichtung, wobei diese als Bindeglied zwischen künstlichem Implantat und natürlichem Knochengewebe dienen. rnIm zweiten Themengebiet dieser Arbeit wurde die Grenzfläche von Nanometer-großen Miniemulsionströpfchen eingesetzt, um einzelne in der dispersen Phase gelöste Polymerketten zu separieren. Nach der Verdampfung des in den Tröpfchen vorhandenen Lösungsmittels wurden stabile Dispersionen sehr kleiner Polymer-Nanopartikel (<10 nm Durchmesser) erhalten, die aus nur wenigen oder einer einzigen Polymerkette bestehen. Die kolloidale Stabilität der Partikel nach der Synthese, gewährleistet durch die Anwesenheit von SDS in der wässrigen Phase der Dispersionen, ist vorteilhaft für die anschließende Charakterisierung der Polymer-Nanopartikel. Die Partikelgröße der Nanopartikel wurde mittels DLS und TEM bestimmt und mit Hilfe der Dichte und des Molekulargewichts der verwendeten Polymere die Anzahl an Polymerketten pro Partikel bestimmt. Wie es für Partikel, die aus nur einer Polymerkette bestehen, erwartet wird, stieg die mittels DLS bestimmte Partikelgröße mit steigendem Molekulargewicht des in der Synthese der Partikel eingesetzten Polymers deutlich an. Die Quantifizierung der Kettenzahl pro Partikel mit Hilfe von Fluoreszenzanisotropie-Messungen ergab, dass Polymer-Einzelkettenpartikel hoher Einheitlichkeit hergestellt wurden. Durch die Verwendung eines Hochdruckhomogenisators zur Herstellung der Einzelkettendispersionen war es möglich, größere Mengen der Einzelkettenpartikel herzustellen, deren Materialeigenschaften zurzeit näher untersucht werden.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid Elektrodenmaterialien (HEM) sind der Schlüssel zu grundlegenden Fortschritten in der Energiespeicherung und Systemen zur Energieumwandlung, einschließlich Lithium-Ionen-Batterien (LiBs), Superkondensatoren (SCs) und Brennstoffzellen (FCs). Die faszinierenden Eigenschaften von Graphen machen es zu einem guten Ausgangsmaterial für die Darstellung von HEM. Jedoch scheitern traditionelle Verfahren zur Herstellung von Graphen-HEM (GHEM) scheitern häufig an der fehlenden Kontrolle über die Morphologie und deren Einheitlichkeit, was zu unzureichenden Grenzflächenwechselwirkungen und einer mangelhaften Leistung des Materials führt. Diese Arbeit konzentriert sich auf die Herstellung von GHEM über kontrollierte Darstellungsmethoden und befasst sich mit der Nutzung von definierten GHEM für die Energiespeicherung und -umwandlung. Die große Volumenausdehnung bildet den Hauptnachteil der künftigen Lithium-Speicher-Materialien. Als erstes wird ein dreidimensionaler Graphen Schaumhybrid zur Stärkung der Grundstruktur und zur Verbesserung der elektrochemischen Leistung des Fe3O4 Anodenmaterials dargestellt. Der Einsatz von Graphenschalen und Graphennetzen realisiert dabei einen doppelten Schutz gegen die Volumenschwankung des Fe3O4 bei dem elektrochemischen Prozess. Die Leistung der SCs und der FCs hängt von der Porenstruktur und der zugänglichen Oberfläche, beziehungsweise den katalytischen Stellen der Elektrodenmaterialien ab. Wir zeigen, dass die Steuerung der Porosität über Graphen-basierte Kohlenstoffnanoschichten (HPCN) die zugängliche Oberfläche und den Ionentransport/Ladungsspeicher für SCs-Anwendungen erhöht. Desweiteren wurden Stickstoff dotierte Kohlenstoffnanoschichten (NDCN) für die kathodische Sauerstoffreduktion (ORR) hergestellt. Eine maßgeschnittene Mesoporosität verbunden mit Heteroatom Doping (Stickstoff) fördert die Exposition der aktiven Zentren und die ORR-Leistung der metallfreien Katalysatoren. Hochwertiges elektrochemisch exfoliiertes Graphen (EEG) ist ein vielversprechender Kandidat für die Darstellung von GHEM. Allerdings ist die kontrollierte Darstellung von EEG-Hybriden weiterhin eine große Herausforderung. Zu guter Letzt wird eine Bottom-up-Strategie für die Darstellung von EEG Schichten mit einer Reihe von funktionellen Nanopartikeln (Si, Fe3O4 und Pt NPs) vorgestellt. Diese Arbeit zeigt einen vielversprechenden Weg für die wirtschaftliche Synthese von EEG und EEG-basierten Materialien.