2 resultados para hunger

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trehalose ist der Hauptblutzucker in der Hämolymphe der meisten Insekten. Trehalose wird im Fettkörper synthetisiert, dem wichtigsten Organ des Intermediärstoffwechsels bei Insekten. Wie die Homöostase des Blutzuckers reguliert wird, ist nicht vollständig geklärt. Die Produktion von Trehalose erfordert eine grundlegende Umschaltung im Stoffwechsel des Fettkörpers, die mehrere wichtige Stoffwechselwege betrifft, so dass die Fettkörperzellen (Trophocyten) von der Speicherung und Katabolisierung von Zucker zur Mobilisierung von Reservestoffen (Glykogen, Fett, Protein) und Trehalosesynthese umschalten. Am Fettkörper und isolierten Trophocyten der Argentinischen Schabe (Blaptica dubia) wurden Stoffwechseleffekte und Elemente der Signalkette des hypertrehalosämischen Hormons Bld HrTH untersucht. Inkubation isolierter Fettkörperloben mit Bld HrTH verringerte innerhalb von 60 min den Glykogengehalt (um 13,4 %) und steigerte die Konzentration der Hexosephosphate Glucose-6-phosphat und Fructose-6-phosphat, die Substrat sowohl für die Trehalosesynthese als auch für die Glykolyse sind. Pyruvat, Glycerin-3-phosphat, Citrat und insbesondere Fructose-1,6-bisphosphat (+750 %) waren ebenfalls erhöht. Der Glykolyseaktivator/Gluconeogeneseinhibitor Fructose-2,6-bisphosphat wird durch Bld HrTH vermindert. Da Trehalosesynthese und Glykolyse um dieselben Substrate (Glucosephosphate) konkurrieren, fördert der hormoninduzierte Abfall des Glykolyseaktivators Fructose-2,6-bisphosphat die Trehalogenese.Es ist gelungen, Trophocyten zu isolieren und die Signaltransduktion von Bld HrTH an einheitlichen Zellen und auch an Einzelzellen zu studieren. Hauptziel dieser Arbeit war es, die Funktion von Ca2+ im Signalweg des Bld HrTH genauer zu untersuchen. Die isolierten Zellen reagierten auf das Neuropeptid mit einer deutlichen Steigerung der Trehalosesynthese (+133,7 %) und einer Senkung des Fructose-2,6-bisphosphat-Gehaltes (-30,2 %). Sie bieten somit ein geeignetes System zur Untersuchung der Wirkungsmechanismen von Bld HrTH auf zellulärem Niveau. Ca2+ aus dem Extrazellulärraum und aus intrazellulären Speichern spielen bei der Signaltransduktion eine Rolle. Während extrazelluläres Ca2+ insbesondere für die Senkung des Fructose-2,6-bisphosphat-Gehaltes wichtig war, wurde Ca2+ aus zellulären Speichern insbesondere für die Trehalosesynthese benötigt, wobei sich jedoch beide Wege wechselseitig beeinflussen. Erstmals konnten an isolierten Trophocyten Änderungen von Ca2+ mikrofluorometrisch an Einzelzellen studiert werden. Das hypertrehalosämische Hormon ruft einen schnellen und starken Anstieg der intrazellulären Ca2+-Konzentration ([Ca2+]i) hervor. Die Untersuchungen deuten auf einen Signalweg über IP3 und Diacylglycerin hin, entsprechend der Phosphoinositidkaskade. Eine Beteiligung des biogenen Amins Octopamin, von cAMP oder von Stickstoffmonoxid (NO) an der Signaltransduktion scheint hingegen unwahrscheinlich. Der Zuckergehalt im Medium scheint ebenfalls auf die Trehalogenese zu wirken. Bei hohen Konzentrationen von Glucose oder Trehalose wurde eine Hemmung der Trehalosesynthese beobachtet, die als Rückkopplungshemmung gedeutet werden kann. Bei Hunger wird das im Fettkörper gespeicherte Glykogen stark reduziert. Außerdem scheint die Zahl der symbiontischen Mikroorganismen in den Mycetocyten verringert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autophagie ist ein konservierter, kataboler Mechanismus in allen eukaryoten Zellen. Unter anderem wird ihm eine wichtige Rolle als zellautonomer Abwehrmechanismus gegen Mikroorganismen zugeschrieben; von manchen Infektionserregern wird er jedoch unterlaufen oder sogar genutzt. Der stärkste Auslöser der Autophagie ist ein Mangel an Nährstoffen, insbesondere Aminosäuren. Über die Deaktivierung der Kinase mTORC1 und die Phosphorylierung des eukaryoten Translationsinitiationsfaktors eIF2α hemmt die Nährstoffknappheit die Proteinbiosynthese und aktiviert gleichzeitig Autophagie. Wie Mikroorganismen, insbesondere Bakterien, Autophagie auslösen oder manipulieren, ist derzeit Gegenstand intensiver Forschung. Modifikationen an Mikroben oder Phagosomen und Adapterproteine, die diese Veränderungen und Komponenten des Autophagieapparates erkennen, scheinen jedenfalls bei der selektiven Erkennung durch die Autophagie-Maschinerie wichtig zu sein. rnIn der vorliegenden Dissertationsarbeit wird die Rolle des membranporenbildenden α-Toxins von Staphylococcus aureus für die Induktion von Autophagie beleuchtet. Zum einen erwies sich die Akkumulation von (EGFP)-LC3(II), einem Marker der Autophagosomen, um intrazelluläre S. aureus als abhängig von α-Toxin. Zweitens, genügt extrazellulär appliziertes α-Toxin um (EGFP)-LC3(II)-positive Endosomen zu induzieren. Während der Angriff aus dem extrazellulären Raum jedoch binnen kurzer Zeit eine fokale Kumulation von phosphoryliertem eIF2α an der Plasmamembran induziert, die an der Internalisierung des Toxins beteiligt ist, findet sich am phagosomalen Kompartiment keine Toxin-abhängige Anhäufung von p-eIF2α oder proximalen Autophagieregulatoren. Dies impliziert, dass Toxin-Angriff auf die Plasmamembran, nicht aber auf das Phagosom, zu einer Reaktion führt, wie sie bei massivem Nährstoffmangel zu beobachten ist. Obwohl keine α-Toxin-abhängige Kumulation von p-eIF2α bei einem Angriff aus dem Phagosom erfolgt, findet sich um α-Toxin-produzierende Bakterien eine massive Kumulation von LC3 und Adapterprotein p62/Sequestosome1. Dies deutet daraufhin, dass der Ort des Angriffs - Plasmamembran oder Phagosom – für den Autophagie-induzierenden Mechanismus wichtig sein könnte. Der unterschiedliche Effekt auf die zellulären Ionenkonzentrationen, den ein Angriff auf die Plasmamembran oder auf ein Phagosom auslösen würde, bietet hierfür eine mögliche Erklärung. Die Aktivierung der Autophagie über Adapterproteine könnte dann als back-up Mechanismus fungieren, der auch dann greift, wenn eine Invasion ohne Schädigung der Plasmamembran erfolgt. Ein cross-talk der beiden Induktionswege ist angesichts der Bedeutung von p62 für die selektive und die Hunger-assoziierte Autophagie gut möglich; sezerniertes Toxin könnte durch die Aktivierung der basalen Autophagie Adapter-basierte Mechanismen verstärken.