3 resultados para height ridges
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In this work the growth and the magnetic properties of the transition metals molybdenum, niobium, and iron and of the highly-magnetostrictive C15 Laves phases of the RFe2 compounds (R: Rare earth metals: here Tb, Dy, and Tb{0.3}Dy{0.7} deposited on alpha-Al2O3 (sapphire) substrates are analyzed. Next to (11-20) (a-plane) oriented sapphire substrates mainly (10-10) (m-plane) oriented substrates were used. These show a pronounced facetting after high temperature annealing in air. Atomic force microscopy (AFM) measurements reveal a dependence of the height, width, and angle of the facets with the annealing temperature. The observed deviations of the facet angles with respect to the theoretical values of the sapphire (10-1-2) and (10-11) surfaces are explained by cross section high resolution transmission electron microscopy (HR-TEM) measurements. These show the plain formation of the (10-11) surface while the second, energy reduced (10-1-2) facet has a curved shape given by atomic steps of (10-1-2) layers and is formed completely solely at the facet ridges and valleys. Thin films of Mo and Nb, respectively, deposited by means of molecular beam epitaxy (MBE) reveal a non-twinned, (211)-oriented epitaxial growth as well on non-faceted as on faceted sapphire m-plane, as was shown by X-Ray and TEM evaluations. In the case of faceted sapphire the two bcc crystals overgrow the facets homogeneously. Here, the bcc (111) surface is nearly parallel to the sapphire (10-11) facet and the Mo/Nb (100) surface is nearly parallel to the sapphire (10-1-2) surface. (211)-oriented Nb templates on sapphire m-plane can be used for the non-twinned, (211)-oriented growth of RFe2 films by means of MBE. Again, the quality of the RFe2 films grown on faceted sapphire is almost equal to films on the non-faceted substrate. For comparison thin RFe2 films of the established (110) and (111) orientation were prepared. Magnetic and magnetoelastic measurements performed in a self designed setup reveal a high quality of the samples. No difference between samples with undulated and flat morphology can be observed. In addition to the preparation of covering, undulating thin films on faceted sapphire m-plane nanoscopic structures of Nb and Fe were prepared by shallow incidence MBE. The formation of the nanostructures can be explained by a shadowing of the atomic beam due to the facets in addition to de-wetting effects of the metals on the heated sapphire surface. Accordingly, the nanostructures form at the facet ridges and overgrow them. The morphology of the structures can be varied by deposition conditions as was shown for Fe. The shape of the structures vary from pearl-necklet strung spherical nanodots with a diameter of a few 10 nm to oval nanodots of a few 100 nm length to continuous nanowires. Magnetization measurements reveal uniaxial magnetic anisotropy with the easy axis of magnetization parallel to the facet ridges. The shape of the hysteresis is depending on the morphology of the structures. The magnetization reversal processes of the spherical and oval nanodots were simulated by micromagnetic modelling and can be explained by the formation of magnetic vortices.
Resumo:
The global mid-ocean ridge system creates oceanic crust and lithosphere that covers more than two-thirds of the Earth. Basalts are volumetrically the most important rock type sampled at mid-ocean ridges. For this reason, our present understanding of upper mantle dynamics and the chemical evolution of the earth is strongly influenced by the study of mid-ocean ridge basalts (MORB). However, MORB are aggregates of polybarically generated small melt increments that can undergo a variety of physical and chemical processes during their ascent and consequently affect their derivative geochemical composition. Therefore, MORB do not represent “direct” windows to the underlying upper mantle. Abyssal peridotites, upper mantle rocks recovered from the ocean floor, are the residual complement to MORB melting and provide essential information on melt extraction from the upper mantle. In this study, abyssal peridotites are examined to address these overarching questions posed by previous studies of MORB: How are basaltic melts formed in the mantle, how are they extracted from the mantle and what physical and chemical processes control mantle melting? The number of studies on abyssal peridotites is small compared to those on basalts, in part because seafloor exposures of abyssal peridotites are relatively rare. For this reason, abyssal peridotite characteristics need to be considered in the context of subaerially exposed peridotites associated with ophiolites, orogenic peridotite bodies and basalt-hosted xenoliths. However, orogenic peridotite bodies are mainly associated with passive continental margins, most ophiolites are formed in supra-subduction zone settings, and peridotite xenoliths are often contaminated by their host magma. Therefore, studies of abyssal peridotites are essential to understanding the primary characteristics of the oceanic upper mantle free from the influence of continental rifting, subduction and tectonic emplacement processes. Nevertheless, numerous processes such as melt stagnation and cooling-induced, inter-mineral exchange can affect residual abyssal peridotite compositions after the cessation of melting. The aim of this study is to address these post-melting modifications of abyssal peridotites from a petrological-geochemical perspective. The samples in this study were dredged along the axis of the ultraslow-spreading Gakkel Ridge in the Arctic Ocean within the “Sparsely Magmatic Zone”, a 100 km ridge section where only mantle rocks are exposed. During two expeditions (ARK XVII-2 in 2001 and ARK XX-2 in 2004), exceptionally fresh peridotites were recovered. The boulders and cobbles collected cover a range of mantle rock compositions, with most characterized as plagioclase-free spinel peridotites or plagioclase- spinel peridotites. This thesis investigates melt stagnation and cooling processes in the upper mantle and is divided into two parts. The first part focuses on processes in the stability field of spinel peridotites (>10 kb) such as melt refertilization and cooling related trace element exchange, while the second part investigates processes in the stability field of plagioclase peridotites (< 10 kb) such as reactive melt migration and melt stagnation. The dissertation chapters are organized to follow the theoretical ascent of a mantle parcel upwelling beneath the location where the samples were collected.
Resumo:
Der Begriff "Bannerwolke" bezeichnet ein eindrucksvolles Phänomen aus dem Bereich der Gebirgsmeteorologie. Bannerwolken können gelegentlich im Hochgebirge im Bereich steiler Bergspitzen oder langgezogener Bergrücken, wie z.B. dem Matterhorn in den Schweizer Alpen oder dem Zugspitzgrat in den Bayrischen Alpen beobachtet werden. Der Begriff bezeichnet eine Banner- oder Fahnen-ähnliche Wolkenstruktur, welche an der windabgewandten Seite des Berges befestigt zu sein scheint, während die windzugewandte Seite vollkommen wolkenfrei ist. Bannerwolken fanden bislang, trotz ihres relativ häufigen Auftretens in der wissenschaftlichen Literatur kaum Beachtung. Entsprechend wenig ist über ihren Entstehungsmechanismus und insbesondere die relative Bedeutung dynamischer gegenüber thermodynamischer Prozesse bekannt. In der wissenschaftlichen Literatur wurden bislang 3 unterschiedliche Mechanismen postuliert, um die Entstehung von Bannerwolken zu erklären. Demnach entstehen Bannerwolken durch (a) den Bernoulli-Effekt, insbesondere durch die lokale adiabatische Kühlung hervorgerufen durch eine Druckabnahme entlang quasi-horizontal verlaufender, auf der windzugewandten Seite startender Trajektorien, (b) durch isobare Mischung bodennaher kälterer Luft mit wärmerer Luft aus höheren Schichten, oder (c) durch erzwungene Hebung im aufsteigenden Ast eines Leerotors. Ziel dieser Arbeit ist es, ein besseres physikalisches Verständnis für das Phänomen der Bannerwolke zu entwickeln. Das Hauptaugenmerk liegt auf dem dominierenden Entstehungsmechanismus, der relativen Bedeutung dynamischer und thermodynamischer Prozesse, sowie der Frage nach geeigneten meteorologischen Bedingungen. Zu diesem Zweck wurde ein neues Grobstruktursimulations (LES)-Modell entwickelt, welches geeignet ist turbulente, feuchte Strömungen in komplexem Terrain zu untersuchen. Das Modell baut auf einem bereits existierenden mesoskaligen (RANS) Modell auf. Im Rahmen dieser Arbeit wurde das neue Modell ausführlich gegen numerische Referenzlösungen und Windkanal-Daten verglichen. Die wesentlichen Ergebnisse werden diskutiert, um die Anwendbarkeit des Modells auf die vorliegende wissenschaftliche Fragestellung zu überprüfen und zu verdeutlichen. Die Strömung über eine idealisierte pyramidenförmige Bergspitze wurde für Froude-Zahlen Fr >> 1 sowohl auf Labor- als auch atmosphärischer Skala mit und ohne Berücksichtigung der Feuchtephysik untersucht. Die Simulationen zeigen, dass Bannerwolken ein primär dynamisches Phänomen darstellen. Sie entstehen im Lee steiler Bergspitzen durch dynamisch erzwungene Hebung. Die Simulationen bestätigen somit die Leerotor-Theorie. Aufgrund des stark asymmetrischen, Hindernis-induzierten Strömungsfeldes können Bannerwolken sogar im Falle horizontal homogener Anfangsbedingungen hinsichtlich Feuchte und Temperatur entstehen. Dies führte zu der neuen Erkenntnis, dass zusätzliche leeseitige Feuchtequellen, unterschiedliche Luftmassen in Luv und Lee, oder Strahlungseffekte keine notwendige Voraussetzung für die Entstehung einer Bannerwolke darstellen. Die Wahrscheinlichkeit der Bannerwolkenbildung steigt mit zunehmender Höhe und Steilheit des pyramidenförmigen Hindernisses und ist in erster Näherung unabhängig von dessen Orientierung zur Anströmung. Simulationen mit und ohne Berücksichtigung der Feuchtephysik machen deutlich, dass thermodynamische Prozesse (insbes. die Umsetzung latenter Wärme) für die Dynamik prototypischer (nicht-konvektiver) Bannerwolken zweitrangig ist. Die Verstärkung des aufsteigenden Astes im Lee und die resultierende Wolkenbildung, hervorgerufen durch die Freisetzung latenter Wärme, sind nahezu vernachlässigbar. Die Feuchtephysik induziert jedoch eine Dipol-ähnliche Struktur im Vertikalprofil der Brunt-Väisälä Frequenz, was zu einem moderaten Anstieg der leeseitigen Turbulenz führt. Es wird gezeigt, dass Gebirgswellen kein entscheidendes Ingredienz darstellen, um die Dynamik von Bannerwolken zu verstehen. Durch eine Verstärkung der Absinkbewegung im Lee, haben Gebirgswellen lediglich die Tendenz die horizontale Ausdehnung von Bannerwolken zu reduzieren. Bezüglich geeigneter meteorologischer Bedingungen zeigen die Simulationen, dass unter horizontal homogenen Anfangsbedingungen die äquivalentpotentielle Temperatur in der Anströmung mit der Höhe abnehmen muss. Es werden 3 notwendige und hinreichende Kriterien, basierend auf dynamischen und thermodynamischen Variablen vorgestellt, welche einen weiteren Einblick in geeignete meteorologische Bedingungen geben.