1 resultado para gravitational 2-body problem
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (5)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Aquatic Commons (29)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (7)
- Aston University Research Archive (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (10)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (10)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (11)
- Boston University Digital Common (12)
- Brock University, Canada (16)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (27)
- Cambridge University Engineering Department Publications Database (13)
- CentAUR: Central Archive University of Reading - UK (3)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (59)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- DigitalCommons@The Texas Medical Center (4)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (10)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Greenwich Academic Literature Archive - UK (11)
- Helda - Digital Repository of University of Helsinki (23)
- Indian Institute of Science - Bangalore - Índia (112)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (6)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (7)
- Portal de Revistas Científicas Complutenses - Espanha (6)
- Publishing Network for Geoscientific & Environmental Data (3)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (128)
- Queensland University of Technology - ePrints Archive (200)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (9)
- Repositório Institucional da Universidade de Aveiro - Portugal (7)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (124)
- Research Open Access Repository of the University of East London. (3)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (10)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal de Uberlândia (2)
- Universidade Federal do Pará (1)
- Universidade Metodista de São Paulo (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (17)
- Université de Montréal, Canada (4)
- University of Connecticut - USA (1)
- University of Michigan (14)
- University of Queensland eSpace - Australia (2)
- University of Southampton, United Kingdom (1)
- University of Washington (2)
- WestminsterResearch - UK (4)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Assuming that the heat capacity of a body is negligible outside certain inclusions the heat equation degenerates to a parabolic-elliptic interface problem. In this work we aim to detect these interfaces from thermal measurements on the surface of the body. We deduce an equivalent variational formulation for the parabolic-elliptic problem and give a new proof of the unique solvability based on Lions’s projection lemma. For the case that the heat conductivity is higher inside the inclusions, we develop an adaptation of the factorization method to this time-dependent problem. In particular this shows that the locations of the interfaces are uniquely determined by boundary measurements. The method also yields to a numerical algorithm to recover the inclusions and thus the interfaces. We demonstrate how measurement data can be simulated numerically by a coupling of a finite element method with a boundary element method, and finally we present some numerical results for the inverse problem.