2 resultados para functional differentiation

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study is a comparative functional analysis of three factors controlling glial differentiation in mouse (Fyn Src kinase, hnRNPF/H and NG2) and their homologues in Drosophila (Src42A and 64B, Glorund and Kon-tiki (Kon)). In Drosophila, mutations in any of these genes were not associated with major embryonic neurodevelopmental phenotypes. Src kinases and Glorund were shown to be ubiquitously expressed, whereas kon mRNA showed selective expression in muscles as well as in central and peripheral glia. Kon was also shown to be expressed in L3 larvae with high levels of protein accumulation at the neuromuscular junction (NMJ) and in muscles in the form of speckles. Knockdown of kon in glia resulted in NMJ phenotypes, mainly characterized by a significant increase in bouton number and a reduction in α-Konecto staining intensity at the NMJ. From the three glial layers ensheathing the peripheral nervous system, subperineurial glial showed to be the one contributing the most to kon knockdown dependent NMJ phenotypes, while perineurial glia only had a minor role. The knockdown of kon in glia also showed to affect Glutamate receptor subunit (α-GluRIIA) clustering in the postsynapse, same as microtubule arrangement in the presynapse, as seen by α-Futsch pattern interruptions and alterations. kon knockdown in glia also resulted in impaired axonal transport, as seen by the accumulation of Bruchpilot-positive vesicles along the nerves, abnormal formation of neuronal derived protrusions and swellings, filled with vacuole-like structures. Glia number along the peripheral nerves is also reduced as consequence of kon knockdown. Muscle derived Kon was shown to accumulate at the NMJ and play a role in bouton consolidation and to interfere with phagocytosis of ghost boutons. NMJ bouton and branch number was also significantly increased in Kon overexpression in glia. The overexpression of Kon in glia also resulted in a massive elongation of the ventral nerve cord, which served in a suppressor screen to identify intracellular interaction partners of Kon in glia. It was shown that Kon is processed in glia and preliminary results indicate that the metalloendopeptidase Kuzbanian (the fly homologue of ADAM10) may play a role in the shedding of Konecto. In the present work, Kon is shown as a multifunctional gene with various roles in glia-neuron and glia-neuron-muscle interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chondrocytes live isolated in the voluminous extracellular matrix of cartilage, which they secrete and is neither vascularized nor innervated. Nutrient and waste exchanges occur through diffusion leading to low oxygen tension around the cells. Consequently even normal cartilage under normal physiological conditions suffers from a poor reparative potential that predisposes to degenerative conditions, such as osteoarthritis of the joints, with significant clinical effects.rnOne of the key challenges in medicine is the structural and functional replacement of lost or damaged tissues. Current therapeutical approaches are to transplant cells, implant bioartificial tissues, and chemically induce regeneration at the site of the injury. None of them reproduces well the biological and biomechanical properties of hyaline cartilage.rnThis thesis investigates the re-differentiation of chondrocytes and the repair of cartilage mediated by signaling molecules, biomaterials, and factors provided in mixed cellular cultures (co-culture systems). As signaling molecules we have applied prostaglandin E2 (PGE2) and bone morphogenetic protein 1 (BMP-1) and we have transfected chondrocytes with BMP-1 expressing vectors. Our biomaterials have been hydrogels of type-I collagen and gelatin-based scaffolds designed to mimic the architecture and biochemistry of native cartilage and provide a suitable three-dimensional environment for the cells. We have brought chondrocytes to interact with osteosarcoma Cal 72 cells or with murine preosteoblastic KS483 cells, either in a cell-to-cell or in a paracrine manner.rnExogenous stimulation with PGE2 or BMP-1 did not improve the differentiation or the proliferation of human articular chondrocytes. BMP-1 induced chondrocytic de-differentiation in a dose-dependent manner. Prostaglandin stimulation from gelatin-based scaffolds (three-dimensional culture) showed a certain degree of chondrocyte re-differentiaton. Murine preosteoblastic KS483 cells had no beneficial effect on human articular chondrocytes jointly cultivated with them in hydrogels of type I collagen. Although the hydrogels provided the chondrocytes with a proper matrix in which the cells adopted their native morphology; additionally, the expression of chondrocytic proteoglycan increased in the co-cultures after two weeks. The co-culture of chondrocytes with osteoblast-like cells (in transwell systems) resulted in suppression of the regular de-differentiation program that passaged chondrocytes undergo when cultured in monolayers. Under these conditions, the extracellular matrix of the chondrocytes, rich in type-II collagen and aggrecan, was not transformed into the extracellular matrix characteristic of de-differentiated human articular chondrocytes, which is rich in type-I collagen and versican.rnThis thesis suggests novel strategies of tissue engineering for clinical attempts to improve cartilage repair. Since implants are prepared in vitro (ex-vivo) by expanding human articular chondrocytes (autologous or allogeneic), we conclude that it will be convenient to provide a proper three-dimensional support to the chondrocytes in culture, to supplement the culture medium with PGE2, and to stimulate chondrocytes with osteoblastic factors by cultivating them with osteoblasts.rn