2 resultados para free space
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In order to eliminate the de Gennes packing problem, which usually limits the attainable size of dendrimers, a new branching unit containing para-tetraphenylene ethynyl arms has been synthesized and utilized in the preparation of dendrimers of the Müllen type. The divergent principle of synthesis, based on the Dilthey reaction, could be carried up to sixth generation which contains 2776 benzene rings and possesses a diameter in the 27 nm range ("exploded dendrimer"). Monodispersity and dimensions of this and the lower generation species have been studied by MALDI-TOF MS (including the very recent superconducting tunnel junction detector), by size-exclusion chromatography, dynamic light scattering, transmission electron microscopy, and atomic force microscopy. Interesting features, apart from the huge dimension, are the low density and high porosity of these giant molecules which cause extensive aggregation in the gas phase, flattening on solid support (AFM) and the ready incorporation of guest molecules in the condensed phase. Since the synthesis of the para-tetraphenylene arms is quite elaborate, similar dendrimers containing para-terphenylene arms have been prepared; they are accessible more economically ("semi-exploded dendrimers"). It has been shown that they in several aspects mimic the features of the "exploded dendrimers". In order to take advantage of the presence of large internal cavities in this dendrimer type, dendrons containing -C≡C- triple bonds have also been incorporated. Surprisingly, they are readily hydrogenated under the condition of heterogeneous catalysis (Pd/C) which demonstrates the large size of the cavities. As revealed by a quartz microbalance study the post-hydrogenation dendrimers are less prone to incorporate guest molecules than before hydrogenation. Obviously, the more flexible nature of the former reduces porosity, it also leads to significant shrinkage. An interesting perspective is the use of homogeneous hydrogenation catalysts of variable size with the aim of determining the dimension of internal free space.
Resumo:
Phononische Kristalle sind strukturierte Materialien mit sich periodisch ändernden elastischen Moduln auf der Wellenlängenskala. Die Interaktion zwischen Schallwellen und periodischer Struktur erzeugt interessante Interferenzphänomene, und phononische Kristalle erschließen neue Funktionalitäten, die in unstrukturierter Materie unzugänglich sind. Hypersonische phononische Kristalle im Speziellen, die bei GHz Frequenzen arbeiten, haben Periodizitäten in der Größenordnung der Wellenlänge sichtbaren Lichts und zeigen daher die Wege auf, gleichzeitig Licht- und Schallausbreitung und -lokalisation zu kontrollieren, und dadurch die Realisierung neuartiger akusto-optischer Anordnungen. Bisher bekannte hypersonische phononische Kristalle basieren auf thermoplastischen Polymeren oder Epoxiden und haben nur eingeschränkte thermische und mechanische Stabilität und mechanischen Kontrast. Phononische Kristalle, die aus mit Flüssigkeit gefüllten zylindrischen Kanälen in harter Matrix bestehen, zeigen einen sehr hohen elastischen Kontrast und sind bislang noch unerforscht. In dieser Dissertation wird die experimentelle Untersuchung zweidimensionaler hypersonischer phononischer Kristalle mit hexagonaler Anordnung zylindrischer Nanoporen basierend auf der Selbstorganisation anodischen Aluminiumoxids (AAO) beschrieben. Dazu wird die Technik der hochauflösenden inelastischen Brillouin Lichtstreuung (BLS) verwendet. AAO ist ein vielsetiges Modellsystem für die Untersuchung reicher phononischer Phänomene im GHz-Bereich, die eng mit den sich in den Nanoporen befindlichen Flüssigkeiten und deren Interaktion mit der Porenwand verknüpft sind. Gerichteter Fluss elastischer Energie parallel und orthogonal zu der Kanalachse, Lokalisierung von Phononen und Beeinflussung der phononischen Bandstruktur bei gleichzeitig präziser Kontrolle des Volumenbruchs der Kanäle (Porosität) werden erörtert. Außerdem ermöglicht die thermische Stabilität von AAO ein temperaturabhängiges Schalten phononischer Eigenschaften infolge temperaturinduzierter Phasenübergänge in den Nanoporen. In monokristallinen zweidimensionalen phononischen AAO Kristallen unterscheiden sich die Dispersionsrelationen empfindlich entlang zweier hoch symmetrischer Richtungen in der Brillouinzone, abhängig davon, ob die Poren leer oder gefüllt sind. Alle experimentellen Dispersionsrelationen werden unter Zuhilfenahme theoretische Ergebnisse durch finite Elemente Analyse (FDTD) gedeutet. Die Zuordnung der Verschiebungsfelder der elastischen Wellen erklärt die Natur aller phononischen Moden.