3 resultados para evanescently-coupled uni-traveling-carrier photodiode
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Folic acid, also known as vitamin B9, is the oxidized form of 5,6,7,8-tetrahydrofolate, which serves as methyl- or methylene donor (C1-building blocks) during DNA synthesis. Under physiological conditions the required amount of 5,6,7,8-tetrahydrofolate for survival of the cell is accomplished through the reduced folate carrier (RFC). In contrast, the supply of 5,6,7,8-tetrahydrofolate is insufficient under pathophysiological conditions of tumors due to an increased proliferation rate. Consequently, many tumor cells exhibit an (over)expression of the folate receptor. This phenomenon has been applied to diagnostics (PET, SPECT, MR) to image FR-positive tumors and on the other hand to treat malignancies related to a FR (over)expression. Based on this concept, a new 18F-labeled folate for PET imaging has been developed and was evaluated in vivo using tumor-bearing mice. The incorporation of oligoethylene spacers into the molecular structure led to a significant enhancement of the pharmacokinetics in comparison to previously developed 18F-folates. The liver uptake could be reduced by one sixth by remaining a tumor uptake of 3%ID/g leading to better contrast ratios. Encouraged by these results, a clickable 18F-labeled serine-based prosthetic group has been synthesized, again with the idea to improve the metabolic and pharmacokinetic profile of hydrophilic radiotracers. Therefore, an alkyne-carrying azido-functionalized serine derivative for coupling to biomolecules was synthesized and a chlorine leaving group for 18F-labeling, which could be accomplished using a microwave-assisted synthesis, a [K⊂2.2.2]+/carbonate system in DMSO. Radiochemical yields of 77±6% could be achieved.rnThe promising results obtained from the FR-targeting concept in the diagnostic field have been transferred to the boron neutron capture therapy. Therefore, a folate derivative was coupled to different boron clusters and cell uptake studies were conducted. The synthesis of the folate-boron clusters was straightforward. At first, a linker molecule based on maleic acid was synthesized, which was coupled to the boron cluster via Michael Addition of a thiol and alkene and subsequently coupled to the targeting moiety using CuAAC. The new conjugates of folate and boron clusters led to a significant increase of boron concentration in the cell of about 5-times compared to currently used and approved boron pharmaceuticals. rnMoreover, azido-folate derivatives were coupled to macromolecular carrier systems (pHPMA), which showed an enhanced and specific accumulation at target sites (up to 2.5-times) during in vivo experiments. A specific blockade could be observed up to 30% indicating an efficient targeting effect. A new kind of nanoparticles consisting of a PDLLA core and p((HPMA)-b-LMA)) as surfactants were developed and successfully radiolabeled via 18F-click chemistry in good RCYs of 8±3%rnThe nanoparticles were obtained via the miniemulsion technique in combination with solvent evaporation. The 18F-labeled nanoparticles were applied to in vivo testing using a mouse model. PET imaging showed a “mixed” biodistribution of low molecular weight as well as high molecular weight systems, indicating a partial loss of the 18F-labeled surfactant.rnIn conclusion, the presented work successfully utilized the FR-targeting concept in both, the diagnostic field (PET imaging) and for therapeutic approaches (BNCT, drug delivery systems). As a result, the high potential of FR-targeting in oncological applications has been shown and was confirmed by small animal PET imaging.rn
Resumo:
In this work the numerical coupling of thermal and electric network models with model equations for optoelectronic semiconductor devices is presented. Modified nodal analysis (MNA) is applied to model electric networks. Thermal effects are modeled by an accompanying thermal network. Semiconductor devices are modeled by the energy-transport model, that allows for thermal effects. The energy-transport model is expandend to a model for optoelectronic semiconductor devices. The temperature of the crystal lattice of the semiconductor devices is modeled by the heat flow eqaution. The corresponding heat source term is derived under thermodynamical and phenomenological considerations of energy fluxes. The energy-transport model is coupled directly into the network equations and the heat flow equation for the lattice temperature is coupled directly into the accompanying thermal network. The coupled thermal-electric network-device model results in a system of partial differential-algebraic equations (PDAE). Numerical examples are presented for the coupling of network- and one-dimensional semiconductor equations. Hybridized mixed finite elements are applied for the space discretization of the semiconductor equations. Backward difference formluas are applied for time discretization. Thus, positivity of charge carrier densities and continuity of the current density is guaranteed even for the coupled model.
Resumo:
This work addresses the electronical properties of the superconductors UPd2Al3 and UNi2Al3 on the basis of thin film experiments. These isotructural compounds are ideal candiates to study the interplay of magnetism and superconductivity due to the differences of their magnetically ordered states, as well as the experimental evidence for a magnetic pairing mechanism in UPd2Al3. Epitaxial thin film samples of UPd2Al3 and UNi2Al3 were prepared using UHV Molecular Beam Epitaxy (MBE). For UPd2Al3, the change of the growth direction from the intrinsic (001) to epitaxial (100) was predicted and sucessfully demonstrated using LaAlO3 substrates cut in (110) direction. With optimized deposition process parameters for UPd2Al3 (100) on LaAlO3 (110) superconducting samples with critical temperatures up to Tc = 1.75K were obtained. UPd2Al3-AlOx-Ag mesa junctions with superconducting base electrode were prepared and shown to be in the tunneling regime. However, no signatures of a superconducting density of states were observed in the tunneling spectra. The resistive superconducting transition was probed for a possible dependence on the current direction. In contrast to UNi2Al3, the existence of such feature was excluded in UPd2Al3 (100) thin films. The second focus of this work is the dependence of the resisitive transition in UNi2Al3 (100) thin films on the current direction. The experimental fact that the resisitive transition occurs at slightly higher temperatures for I║a than for I║c can be explained within a model of two weakly coupled superconducting bands. Evidence is presented for the key assumption of the two-band model, namely that transport in and out of the ab-plane is generated on different, weakly coupled parts of the Fermi surface. Main indications are the angle dependence of the superconducting transition and the dependence of the upper critical field Bc2 on current and field orientation. Additionally, several possible alternative explanations for the directional splitting of the transition are excluded in this work. An origin due to scattering on crystal defects or impurities is ruled out, likewise a relation to ohmic heating or vortex dynamics. The shift of the transition temperature as function of the current density was found to behave as predicted by the Ginzburg-Landau theory for critical current depairing, which plays a significant role in the two-band model. In conclusion, the directional splitting of the resisitive transition has to be regarded an intrinsic and unique property of UNi2Al3 up to now. Therefore, UNi2Al3 is proposed as a role model for weakly coupled multiband superconductivity. Magnetoresistance in the normalconducting state was measured for UPd2Al3 and UNi2Al3. For UNi2Al3, a negative contribution was observed close to the antiferromagnetic ordering temperature TN only for I║a, which can be associated to reduced spin-disorder scattering. In agreement with previous results it is concluded that the magnetic moments have to be attributed to the same part of the Fermi surface which generates transport in the ab-plane.