2 resultados para diffusive gradients

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of Magnetic Resonance Imaging (MRI) as a diagnostic tool is increasingly employing functional contrast agents to study or contrast entire mechanisms. Contrast agents in MRI can be classified in two categories. One type of contrast agents alters the NMR signal of the protons in its surrounding, e.g. lowers the T1 relaxation time. The other type enhances the Nuclear Magnetic Resonance (NMR) signal of specific nuclei. For hyperpolarized gases the NMR signal is improved up to several orders of magnitude. However, gases have a high diffusivity which strongly influences the NMR signal strength, hence the resolution and appearance of the images. The most interesting question in spatially resolved experiments is of course the achievable resolution and contrast by controlling the diffusivity of the gas. The influence of such diffusive processes scales with the diffusion coefficient, the strength of the magnetic field gradients and the timings used in the experiment. Diffusion may not only limit the MRI resolution, but also distort the line shape of MR images for samples, which contain boundaries or diffusion barriers within the sampled space. In addition, due to the large polarization in gaseous 3He and 129Xe, spin diffusion (different from particle diffusion) could play a role in MRI experiments. It is demonstrated that for low temperatures some corrections to the NMR measured diffusion coefficient have to be done, which depend on quantum exchange effects for indistinguishable particles. Physically, if these effects can not change the spin current, they can do it indirectly by modifying the velocity distribution of the different spin states separately, so that the subsequent collisions between atoms and therefore the diffusion coefficient can eventually be affected. A detailed study of the hyperpolarized gas diffusion coefficient is presented, demonstrating the absence of spin diffusion (different from particle diffusion) influence in MRI at clinical conditions. A novel procedure is proposed to control the diffusion coefficient of gases in MRI by admixture of inert buffer gases. The experimental measured diffusion agrees with theoretical simulations. Therefore, the molecular mass and concentration enter as additional parameters into the equations that describe structural contrast. This allows for setting a structural threshold up to which structures contribute to the image. For MRI of the lung this allows for images of very small structural elements (alveoli) only, or in the other extreme, all airways can be displayed with minimal signal loss due to diffusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tree-ring chronologies are a powerful natural archive to reconstruct summer temperature variations of the late Holocene with an annual resolution. To develop these long-term proxy records tree-ring series are commonly extended back in time by combining samples from living trees with relict dead material preserved onshore or in lakes. Former studies showed that low frequency variations in such reconstructions can be biased if the relict and recent material is from different origins. A detailed analysis of the influence of various ecological (micro-) habitats representing the recent part is required to estimate potential errors in temperature estimates. The application of collective detrending methods, that comprise absolute growth rates, can produce errors in climate reconstructions and results in an underestimation of past temperatures. The appearance of these kind of micro-site effects is a wide-spread phenomenon that takes place all over Fennoscandia. Future research in this key region for dendroclimatology should take this issue into account. Especially the higher climate response at the lakeshore site is interesting to achieve smaller uncertainties when a tree-ring series is transformed to temperature anomalies. For new composite chronologies the main aim should be to minimize potential biases and this includes also micro-site effects.